

Causal and Stable Relativistic Magnetohydrodynamics

(work in preparation...)

Khwahish Kushwah

with Dr. Gabriel S. Denicol

Institute of Physics, Federal Fluminense University, Rio de Janeiro, Brazil

International conference on ultra-relativistic nucleus nucleus collision

Outline

- l. Motivation
- 2. Relativistic Magnetohydrodynamics from Boltzmann equation
- 3. Linear Regime
- 4. Bjorken flow
- 5. Conclusion

Why Relativistic Magnetohydrodynamics?

Magnetic fields in universe: Magnetars! (~ 10¹⁵ gauss)

Heavy Ion Collisions (~ 10¹⁸- 10¹⁹ gauss)

Magnetic field + Relativistic Fluids

Relativistic Magnetohydrodynamics

Relativistic hydrodynamics framework (B = 0)

Relativistic Dissipative Hydrodynamics

$$T^{\mu
u} = \epsilon u^\mu u^
u - P \Delta^{\mu
u} - \Pi \Delta^{\mu
u} + \pi^{\mu
u},
onumber \ N^\mu = n u^\mu + V^\mu.$$

Conservation Equations

$$\partial_{\mu}T^{\mu
u}=0\;;\;\;\;\partial_{\mu}N^{\mu}=0\;$$

Israel-Stewart Equations

$$egin{align} \dot{\Pi} + \dfrac{\Pi}{ au_\Pi} &= \dfrac{-\zeta heta}{ au_\Pi} + \mathcal{O}(2), \ \dot{V}^{\langle \mu
angle} + \dfrac{V^{\langle \mu
angle}}{ au_V} &= \dfrac{\kappa
abla^\mu lpha}{ au_V} + \mathcal{O}(2), \ \dot{\pi}^{\langle \mu
u
angle} + \dfrac{\pi^{\langle \mu
u
angle}}{ au_\pi} &= \dfrac{2\eta \sigma^{\mu
u}}{ au_\pi} + \mathcal{O}(2), \ \end{aligned}$$

Relativistic hydrodynamics framework (B = 0)

Relativistic Dissipative Hydrodynamics

$$T^{\mu
u} = \epsilon u^\mu u^
u - P \Delta^{\mu
u} - \Pi \Delta^{\mu
u} + \pi^{\mu
u},
onumber \ N^\mu = n u^\mu + V^\mu.$$

Conservation Equations

$$\partial_{\mu}T^{\mu
u}=0\;;\;\;\;\partial_{\mu}N^{\mu}=0\;$$

Israel-Stewart Equations

$$egin{align} \dot{\Pi} + \overline{\dfrac{\Pi}{ au_\Pi}} &= rac{-\zeta heta}{ au_\Pi} + \mathcal{O}(2), \ \dot{V}^{\langle \mu
angle} + rac{V^{\langle \mu
angle}}{ au_V} &= rac{\kappa
abla^\mu lpha}{ au_V} + \mathcal{O}(2), \ \dot{\pi}^{\langle \mu
u
angle} + rac{\pi^{\langle \mu
u
angle}}{ au_\pi} &= rac{2\eta \sigma^{\mu
u}}{ au_\pi} + \mathcal{O}(2), \ \end{pmatrix}$$

Relativistic hydrodynamics framework (B ≠ 0)

$$T^{\mu
u} = \epsilon u^\mu u^
u - P \Delta^{\mu
u} - \Pi \Delta^{\mu
u} + \pi^{\mu
u},
onumber \ N^\mu = n u^\mu + V^\mu.$$

Conservation Equations

$$\partial_{\mu}T^{\mu
u}=-F^{\mu\lambda}J_{\lambda}$$

1st order hydro: Hattori, Hongo, Huang (Symmetry 14 (2022) 9, 1851, Symmetry 14 (2022) 1851)

Israel-Stewart Equations

$$egin{align} \dot{\Pi} + rac{\Pi}{ au_\Pi} &= rac{-\zeta heta}{ au_\Pi} + \mathcal{O}(2), \ \dot{V}^{\langle \mu
angle} + rac{V^{\langle \mu
angle}}{ au_V} &= rac{\kappa
abla^\mu lpha}{ au_V} + \mathcal{O}(2), \ \dot{\pi}^{\langle \mu
u
angle} + rac{\pi^{\langle \mu
u
angle}}{ au_\pi} &= rac{2\eta \sigma^{\mu
u}}{ au_\pi} + \mathcal{O}(2), \ \end{aligned}$$

What are the transient equations at finite B?

For Dilute gases

Boltzmann Vlasov Equations

Resistive dissipative magnetohydrodynamics from the Boltzmann-Vlasov equation

arXiv:1804.05210v2

of presence magnetic field.

theory

in

Gabriel S. Denicol, 1 Etele Molnár, 2, 3 Harri Niemi, 2, 4, 5 and Dirk H. Rischke 2, 6

Possibly Causal Theory

 $k^{\mu}\partial_{\mu}f+qk_{
u}F^{\mu
u}rac{\partial}{\partial k^{\mu}}f=C[f]$

 $F^{\mu\nu} = E^{\mu} u^{\nu} - E^{\nu} u^{\mu} + \epsilon^{\mu\nu\alpha\beta} u_{\alpha}$

Particles undergo binary elastic collisions only.

e.g., the equation for shear stress tensor
$$\begin{aligned} \tau_{\pi}\dot{\pi}^{\langle\mu\nu\rangle} + \pi^{\mu\nu} &= 2\eta\sigma^{\mu\nu} + 2\tau_{\pi}\pi_{\lambda}^{\langle\mu}\,\omega^{\nu\rangle\lambda} - \delta_{\pi\pi}\,\pi^{\mu\nu}\theta - \tau_{\pi\pi}\,\pi^{\lambda\langle\mu}\,\sigma_{\lambda}^{\nu\rangle} + \lambda_{\pi\Pi}\,\Pi\sigma^{\mu\nu} \\ &- \tau_{\pi V}\,V_f^{\langle\mu}\,\dot{u}^{\nu\rangle} + \ell_{\pi V}\nabla^{\langle\mu}\,V_f^{\nu\rangle} + \lambda_{\pi V}\,V_f^{\langle\mu}\,\nabla^{\nu\rangle}\alpha_0 \\ &- \delta_{\pi B}\,\mathfrak{g}Bb^{\alpha\beta}\Delta_{\alpha\kappa}^{\mu\nu}g_{\lambda\beta}\pi^{\kappa\lambda} \;. \end{aligned}$$

For Dilute gases

Possibly Causal Theory Very simple single component system

Resistive dissipative magnetohydrodynamics from the Boltzmann-Vlasov equation Gabriel S. Denicol, 1 Etele Molnár, 2, 3 Harri Niemi, 2, 4, 5 and Dirk H. Rischke 2, 6

of presence magnetic field.

in

theory

Boltzmann Vlasov Equations

 $k^{\mu}\partial_{\mu}f+qk_{
u}F^{\mu
u}rac{\partial}{\partial k^{\mu}}f=C[f]$ $F^{\mu\nu} = E^{\mu} u^{\nu} - E^{\nu} u^{\mu} + \epsilon^{\mu\nu\alpha\beta} u_{\alpha}$

e.g., the equation for shear stress tensor

$$\begin{split} \tau_{\pi} \dot{\pi}^{\langle \mu \nu \rangle} + \pi^{\mu \nu} &= 2 \eta \sigma^{\mu \nu} + 2 \tau_{\pi} \pi_{\lambda}^{\langle \mu} \omega^{\nu \rangle \lambda} - \delta_{\pi \pi} \, \pi^{\mu \nu} \theta - \tau_{\pi \pi} \, \pi^{\lambda \langle \mu} \, \sigma_{\lambda}^{\nu \rangle} + \lambda_{\pi \Pi} \, \Pi \sigma^{\mu \nu} \\ &- \tau_{\pi V} \, V_f^{\langle \mu} \, \dot{u}^{\nu \rangle} + \ell_{\pi V} \nabla^{\langle \mu} \, V_f^{\nu \rangle} + \lambda_{\pi V} \, V_f^{\langle \mu} \, \nabla^{\nu \rangle} \alpha_0 \end{split}$$
 Will this hold

Will this hold for more $-\delta_{\pi B} \mathfrak{q} B b^{\alpha \beta} \Delta^{\mu \nu}_{\alpha \kappa} g_{\lambda \beta} \pi^{\kappa \lambda}$. complicated system as well?

Particles undergo binary elastic collisions only.

Relativistic Magnetohydrodynamics Framework

and, the system in consideration

2 Species-Particle fluid

The system in consideration

- → 2 massless particle species with opposite charges.
- → Vanishing dipole moment & chemical potential.
- → Ultra relativistic limit and constant cross section.
- → Vanishing magnetization.
- → Using Method of Moments to solve the equation of motion. Gabriel S. Denicol, Dirk H. Rischke (2021)

 Microscopic foundations of relativistic fluid dynamics

Equations of motion for the Shear Stress Tensor

Boltzmann Equations

$$\begin{split} k^{\mu}\partial_{\mu}f^{+} + q^{+}k_{\nu}F^{\mu\nu}\frac{\partial}{\partial k^{\mu}}f^{+} &= C[f^{+}]\\ k^{\mu}\partial_{\mu}f^{-} + q^{-}k_{\nu}F^{\mu\nu}\frac{\partial}{\partial k^{\mu}}f^{-} &= C[f^{-}] \end{split}$$

Method of moments leads to Coupled Equations!

$$\Sigma = rac{3P}{5T} \left(\sigma_T^{+-} + \sigma_T
ight)
onumber
onu$$

$$\Delta^{\mu\nu}_{\alpha\beta}\dot{\pi}^{\alpha\beta} + \Sigma\pi^{\mu\nu} + \left[\frac{2qB}{5T}qb^{\lambda\langle\mu}\delta\pi^{\nu\rangle}_{\lambda}\right] = \frac{8}{15}\varepsilon\sigma^{\mu\nu} - \frac{4}{3}\pi^{\mu\nu}\theta - \frac{10}{7}\sigma^{\lambda\langle\mu}\pi^{\nu\rangle}_{\lambda} - 2\omega^{\lambda\langle\nu}\pi^{\mu\rangle}_{\lambda},$$

$$\Delta^{\mu\nu}_{\alpha\beta}\delta\dot{\pi}^{\alpha\beta} + \Sigma'\delta\pi^{\mu\nu} + \left[\frac{2qB}{5T}qb^{\lambda\langle\mu}\pi^{\nu\rangle}_{\lambda}\right] = -\frac{4}{3}\delta\pi^{\mu\nu}\theta - \frac{10}{7}\sigma^{\lambda\langle\mu}\delta\pi^{\nu\rangle}_{\lambda} - 2\omega^{\lambda\langle\nu}\delta\pi^{\mu\rangle}_{\lambda}.$$

$$b^{\mu\nu} = -\epsilon^{\mu\nu\alpha\beta}u_{\alpha}\frac{B_{\beta}}{D}.$$

Projected equation for shear tensor

> Decomposition with respect to the magnetic field

$$egin{aligned} oldsymbol{\pi}^{\mu
u} &= \left(b^{\mu}b^{
u} + rac{1}{2}\Xi^{\mu
u}
ight)oldsymbol{\pi}_{\parallel} - b^{\mu}oldsymbol{\pi}_{\perp}^{
u} - b^{
u}oldsymbol{\pi}_{\perp}^{\mu} + oldsymbol{\pi}_{\perp}^{\mu
u} \end{aligned}$$

- $ightarrow \pi_{||}$ (longitudinal),
- $\rightarrow \pi_{\perp}^{\mu}$ (semi transverse),
- $\rightarrow \pi_{1}^{\mu\nu}$ (transverse).

3 components of shear viscosity.

Each component relaxes differently.

> New basis

Individual components in new basis for simplicity. Taking projection with respect to ℓ^{μ}_{\pm} .

$$\pi_{\perp}^{\mu} = \pi_{\perp}^{+} \ell_{+}^{\mu} + \pi_{\perp}^{-} \ell_{-}^{\mu} \hspace{0.5cm} \pi_{\perp}^{\mu
u} = \pi_{\perp}^{++} \ell_{+}^{\mu} \ell_{+}^{
u} + \pi_{\perp}^{--} \ell_{-}^{\mu} \ell_{-}^{
u}$$

where

$$\ell_{\pm}^{\mu} = \frac{1}{\sqrt{2}} (x^{\mu} \pm i y^{\mu})$$

Final equations for shear stress tensor

Iterating order by order in gradient & truncating upto 2nd order in gradient.

Scalar component

$$\dot{\pi}_{\parallel}+\pi_{\perp}^{\mu}\dot{b}_{\mu}+\Sigma\pi_{\parallel}=rac{8}{15}arepsilon\sigma_{\parallel}-rac{4}{3}\pi_{\parallel} heta-rac{10}{7}\left(-rac{1}{2}\pi_{\parallel}\sigma_{\parallel}+rac{1}{3}\sigma_{\perp}^{\mu}\pi_{\perp\mu}+rac{1}{3}\pi_{\perplphaeta}\sigma_{\perp}^{lphaeta}
ight)-rac{2}{3}\left(\omega_{\perp}^{\mu}\pi_{\perp\mu}+\omega_{\perp}^{lphaeta}\pi_{\perplphaeta}
ight)$$

Vector component

$$egin{aligned} &(1-oldsymbol{arphi}^2)\dot{\pi}_{\perp}^{\mp} + \left(\Sigma + oldsymbol{arphi}^2\Sigma^{'}
ight)\pi_{\perp}^{\mp} \ &= rac{8}{15}oldsymbol{arepsilon}\sigma_{\perp}^{\mp} - \left\lceil (1-oldsymbol{arphi}^2)
ight
ceil \end{aligned}$$

$$=\frac{8}{15}\varepsilon\sigma_{\perp}^{\mp}-\left[\left(1-\varphi^{2}\right)\left(\ell_{\mp}^{\nu}\dot{\ell}_{\nu}^{\pm}+\frac{4\theta}{3}-\frac{5}{14}\sigma_{\parallel}\right)+\varphi\dot{\phi}\right]\pi_{\perp}^{\mp}+\left(1+\varphi^{2}\right)\left[\omega_{\perp}^{\mp\mp}+\frac{5}{7}\sigma_{\perp}^{\mp\mp}\right]\pi_{\perp}^{\pm}\\+\left(1+2\varphi^{2}\right)\left[-\ell_{\mp}^{\nu}\dot{b}_{\nu}+\omega_{\perp}^{\pm}+\frac{5}{7}\sigma_{\perp}^{\pm}\right]\pi_{\perp}^{\mp\mp}+\left(\frac{3}{2}\ell_{\pm}^{\nu}\dot{b}_{\nu}+\frac{\omega_{\perp}^{\mp}}{2}+\frac{5}{14}\sigma_{\perp}^{\mp}\right)\pi_{\parallel}$$

Tensor component

$$(1-4\varphi^2)\dot{\pi}_{\perp}^{\mp\mp} + \left(\Sigma + 4\Sigma'\varphi^2\right)\pi_{\perp}^{\mp\mp}$$

$$8 \qquad \text{TT} \qquad \left[(4-4\varphi^2)\left(2\varphi^2\right) + 4\varphi^2 +$$

$$egin{align*} egin{align*} egin{align*} eta^-)\pi_\perp^+ + \left(2 + 42\,oldsymbol{arphi}^-
ight)\pi_\perp^+ + \left(2 + 42\,oldsymbol{arphi}^-
ight)\pi_\perp^+ + \left(1 - 4oldsymbol{arphi}^2
ight)\left(2\ell_\mp^eta\dot\ell_\beta^\pm + rac43\, heta + rac57\,\sigma_\parallel
ight) - 4oldsymbol{arphi}\dot\phi
ight]\pi_\perp^{\mp\mp} \ &\quad + \left(1 + 2oldsymbol{arphi}^2
ight)\left(2\ell_eta^\pm\dot b^eta + rac{10}{7}\sigma_\perp^\mp + 2\omega_\perp^\mp
ight)\pi_\perp^\mp - \left(rac57\,\sigma_\perp^{\mp\mp} + \omega_\perp^{\mp\mp}
ight)\pi_\parallel \end{aligned}$$

1-particle species

$$au_\pi \dot{\pi}^{\langle\mu
u
angle} + \pi^{\mu
u}$$

$$-\delta_{\pi B} \, \mathsf{q} B b^{\alpha \beta} \Delta^{\mu \nu}_{\alpha \kappa} g_{\lambda \beta} \pi^{\kappa \lambda} - \tau_{\pi \pi} \, \pi^{\lambda \langle \mu} \, \sigma^{\nu \rangle}_{\lambda}$$

$$1-\phi^2$$

$$au_{\perp\perp} = rac{1-\phi^2}{\Sigma + 4\Sigma'\phi^2}$$

 $=2\eta\sigma^{\mu\nu}+2\tau_{\pi}\pi_{\lambda}^{\langle\mu}\omega^{\nu\rangle\lambda}-\delta_{\pi\pi}\pi^{\mu\nu}\theta$

$$arphi = rac{qB}{P} rac{1}{\left(5\sigma_T^{+-} + 3\sigma_T^{++}
ight)}$$

Relaxation time as function of magnetic field

- Different component of shear relaxes differently. Theory fails at large B: Negative relaxation times.

Semi transverse component 1.0

Fully transverse component

Shear Stress Tensor in Linear Regime: Oscillatory dynamics?

Linearising equations around equilibrium and in constant magnetic field.

$$\ddot{\pi}_{\perp}^{\mp} + \left(\Sigma + \Sigma^{'}\right)\dot{\pi}_{\perp}^{\mp} + \left(\Sigma\Sigma^{'} + \Omega^{2}\right)\pi_{\perp}^{\mp} = rac{8}{15}arepsilon\Sigma^{'}\sigma_{\perp}^{\mp} + rac{8}{15}arepsilon\dot{\sigma}_{\perp}^{\mp}, \ \ddot{\pi}_{\perp}^{\mp\mp} + \left(\Sigma + \Sigma^{'}\right)\dot{\pi}_{\perp}^{\mp\mp} + \left(\Sigma\Sigma^{'} + 4\Omega^{2}\right)\pi_{\perp}^{\mp\mp} = rac{8}{15}arepsilon\Sigma^{'}\sigma_{\perp}^{\mp\mp} + rac{8}{15}arepsilon\dot{\sigma}_{\perp}^{\mp\mp}.$$

Harmonic Oscillator type equation!

Mode for the transverse component

$$oldsymbol{\omega} = rac{i}{2} \left[\Sigma + \Sigma^{'} \pm \sqrt{\left(\Sigma - \Sigma^{'}
ight)^{2} - 4\Omega^{2}}
ight]$$

$$\omega = i \Sigma$$
 and $\omega = i \Sigma'$

$$\omega = i \Sigma$$

$$\Omega = \frac{qB}{5T}$$

$$\Omega < \frac{\Sigma^{'} - \Sigma}{4} \Longrightarrow \frac{2qB}{T} < n_0 \sigma_T^{+-}$$

Overdamped

Relaxing to equilibrium

Shear Stress Tensor in Linear Regime: Oscillatory dynamics?

Linearising equations around equilibrium and in constant magnetic field.

$$\ddot{\pi}_{\perp}^{\mp} + \left(\Sigma + \Sigma^{'}\right)\dot{\pi}_{\perp}^{\mp} + \left(\Sigma\Sigma^{'} + \Omega^{2}\right)\pi_{\perp}^{\mp} = rac{8}{15}arepsilon\Sigma^{'}\sigma_{\perp}^{\mp} + rac{8}{15}arepsilon\dot{\sigma}_{\perp}^{\mp}, \ \ddot{\pi}_{\perp}^{\mp\mp} + \left(\Sigma + \Sigma^{'}\right)\dot{\pi}_{\perp}^{\mp\mp} + \left(\Sigma\Sigma^{'} + 4\Omega^{2}\right)\pi_{\perp}^{\mp\mp} = rac{8}{15}arepsilon\Sigma^{'}\sigma_{\perp}^{\mp\mp} + rac{8}{15}arepsilon\dot{\sigma}_{\perp}^{\mp\mp}.$$

Harmonic Oscillator type equation!

$$oldsymbol{\omega} = rac{i}{2} \left[\Sigma + \Sigma' \pm \sqrt{\left(\Sigma - \Sigma'
ight)^2 - 4\Omega^2}
ight]$$

$${f B}={f 0}$$
 Critically damped ${f \omega}=i\ {f \Sigma}$ and ${f \omega}=i\ {f \Sigma}'$

 $\Sigma = rac{3P}{5T} \left(\sigma_T^{+-} + \sigma_T
ight)
onumber
onu$

 $\Omega = \frac{qB}{5T}$

$$\Omega > \frac{\Sigma' - \Sigma}{4} \Longrightarrow \frac{2qB}{T} > n_0 \sigma_T^{+-}$$

Oscillatory dynamics

Can't be described by IS theory!

Bjorken Flow

A simple test of the theory

The equations of motion for different components of shear stress tensor

$$rac{darepsilon}{d au} = rac{\pi_\parallel}{2 au} + rac{\pi_\perp}{2 au} - rac{4arepsilon}{3 au},$$

$$|\dot{\pi}_{||}+\Sigma\pi_{||}=rac{8}{45 au}arepsilon-rac{23}{21 au}\pi_{||}-rac{5}{21 au}\left(\pi_{\perp}^{--}+\pi_{\perp}^{++}
ight)$$

$$\dot{\pi}_{\perp}^{\mp\mp} + \Sigma\pi_{\perp}^{\mp\mp} \pm irac{2Bq}{5T}\delta\pi_{\perp}^{\mp\mp} = rac{4}{15 au}arepsilon - rac{5}{14 au}\pi_{\parallel} - rac{11}{7 au}\pi_{\perp}^{\mp\mp}$$

Energy density

Scalar component

Tensor component

$$B \sim \left(rac{ au_0}{t}
ight)$$

No oscillations!

 $B \sim \left(rac{ au_0}{t}
ight)^{1/2}$

We see oscillations for large viscosity!

 $B \sim \left(rac{ au_0}{t}
ight)^{1/3}$

Oscillations for even smaller magnetic fields.

Conclusion

- A <u>causal and stable theory</u> for relativistic magnetohydrodynamics has <u>not been fully understood yet.</u>
- We derived the <u>equations of motion of relativistic second-order</u> <u>dissipative magnetohydrodynamics</u> from the Boltzmann equation using the method of moments for a <u>2-species particle fluid</u>.
- Different components of the shear stress tensor, with respect to the magnetic field obey different dynamical equations.
- At large magnetic fields, IS theory no longer works: <u>Oscillatory dynamics</u> <u>appears.</u>
- > The oscillations are apparent only when B decays slowly in time.

Backup

Order of magnitude

Second Order Equations of motion

Iterating order by order in gradient & truncated upto 2nd order in gradient.

$$\delta\pi_{\perp}^{\mp\mp} = \pm 2i\varphi\pi_{\perp}^{\mp\mp} + \mathscr{O}(2),$$

$$\begin{split} \Sigma' \delta \pi_{\perp}^{\mp\mp} = & \pm \frac{4}{3} 2i \varphi \pi_{\perp}^{\mp\mp} \theta \pm \frac{5}{7} 2i \varphi \pi_{\perp}^{\mp\mp} \sigma_{\parallel} \pm \frac{10}{7} i \varphi \pi_{\perp}^{\mp} \sigma_{\perp}^{\mp} \mp 2i \Omega \pi_{\perp}^{\mp\mp} \pm 2\varphi i \dot{\pi}_{\perp}^{\mp\mp} \pm 2i \pi_{\perp}^{\mp\mp} \dot{\varphi} \\ & \pm 4i \varphi \pi_{\perp}^{\mp\mp} \ell_{\mp}^{\beta} \dot{\ell}_{\beta}^{\pm} \pm 2i \varphi \pi_{\perp}^{\mp} \ell_{\beta}^{\pm} \dot{b}^{\beta} \pm 2i \varphi \pi_{\perp}^{\mp} \omega_{\perp}^{\mp} + \mathscr{O}(3). \end{split}$$

$$\dot{\pi}_{\perp}^{\mp\mp}\pm irac{2Bq}{5T}\delta\pi_{\perp}^{\mp\mp}=(\cdots)\pi_{\perp}^{\mp\mp}+ ext{other }\pi_{\perp}^{\mp\mp} ext{terms}(\cdots)$$

Substituting the third order equation of relative shear in the equation of total shear stress tensor.

Second Order Equation of Motion for components of $\pi^{\mu\nu}$