

Quenching minijets in a concurrent jet+hydro framework

Mayank Singh

In Collaboration with Daniel Pablos, Sangyong Jeon and Charles Gale Based on Phys. Rev. C 106 (2022) 3, 034901

Standard picture of heavy-ion collisions

MADAI Collaboration, H Petersen, J Bernhard

Bulk of partons in colliding nuclei are produced at saturation scale Q_s and undergo hydrodynamic expansion

Vanderbilt University Mayank Singh 2/1

Intermediate Energy Partons

- Partons with $p > Q_s$ created by initial scatterings
- The processes are perturbative
- They can split and shower
- Randomly oriented in space adding additional source of fluctuations
- Number proportional to N_{coll}

Number of minijets depends strongly on the minimum ρ_T being considered. For $\rho>20$ GeV, there is less than one jet pair per event

Intermediate Energy Partons

The number grows as one considers smaller and smaller p_T

Need for concurrent evolution

- Bulk matter composed of partons near saturation scale $Q_s \approx 2$ GeV at LHC
- Minijets thermalization time longer than the typical hydro start time of 0.2 to 1.5 fm
- Evolution and thermalization of minijets need to be done concurrent to the hydrodynamic evolution

$$x_{\rm stop}^{\rm pQCD} = \frac{1}{a_i \alpha_s^2 T} \sqrt{\frac{E/T}{\ln(E/T)}}$$

Arnold, Cantrell, Xiao, PRD 2010

$$\mathbf{x}_{\mathrm{stop}}^{\mathrm{AdS/CFT}} = \frac{1}{\kappa_i T} \left(\frac{E}{T}\right)^{1/3}$$

Chesler et al., PRD 2009, Gubser et al., JHEP 2008

Initial state

- Soft particles below saturation scale Q_s are initialized by IP-Glasma
- Matched to hydro at $au_0=0.4$ fm $T^{\mu\nu}_{\mathrm{IP}_{\mathrm{Glasma}}}(au_0)=T^{\mu\nu}_{\mathrm{hydro}}(au_0)$

Schenke, Tribedy, Venugopalan, PRL 2012

• Hard particles with $p>p_{\min}^{
m J}$ initialized using hard processes in PYTHIA

Hydrodynamics

 Viscous 3+1 D relativistic hydro equations with source terms solved using MUSIC

$$\partial_{\nu}T^{\mu\nu}=J^{\mu}$$

• Temperature dependent ζ/s and a constant η/s are used

Ryu et al., PRL 2015

- Energy loss of minijets governed by hybrid strong weak coupling model Casalderrey-Solana et al. JHEP 2014
- Lost energy-momentum is written in form of a current convoluted with a gaussian

$$J^{\mu}=\sum_{i}rac{\Delta extstyle P_{i}^{\mu}}{\Delta au(2\pi)^{3/2}\sigma_{ extstyle X}^{2}\sigma_{\eta} au} extstyle e^{-rac{\Delta extstyle x_{i}^{2}+\Delta extstyle y_{i}^{2}}{2\sigma_{ extstyle X}^{2}}-rac{\Delta\eta_{i}^{2}}{2\sigma_{\eta}^{2}}}$$

Hadronization

- Thermal medium incorporating initial thermalized energy (from IP-Glasma) and the energy deposited by minijets hadronized using Cooper-Frye
- Minijet partons close to hypersurface hadronize by forming color neutral strings with a sampled thermal parton
- Remaining "corona" partons hadronize with one another
- All hadrons cascade in UrQMD

Similar approaches

- EKRT: Eskola, Kajantie, Ruuskanen, Tuominen, NPB (2000)
- Tachibana et al. (JETSCAPE), QM 2022
- Yan, Jeon, Gale, PRC 2018
- Kanakubo, Tachibana, Hirano, PRC 2020
- Ke, Wang, JHEP 2021

Vanderbilt University Mayank Singh 8/17

Parameters

 Minimal tuning needed to explain data. Same parameter fits all centralities

$oldsymbol{ ho}_{\min}^{ m J}$	$s_{ m factor}$	η/s
4 GeV	0.45	0.02
7 GeV	0.82	0.1
10 GeV	0.9	0.125
No Jets	0.915	0.13

- The overall normalization of initial entropy in hydro, the $s_{\rm factor}$, needs to be adjusted to account for entropy contribution from minijets
- Shear viscosity is adjusted to account for additional fluctuations

Vanderbilt University Mayank Singh 9/17

Effect on bulk evolution

Isotherms at 220 MeV (red) 195 MeV (yellow) 170 MeV (green) 145 MeV (blue) Leads to a spikier evolution

Vanderbilt University Mayank Singh 10/17

Effect on bulk evolution - Energy contribution

- Ratio of energy injected from minijets to total energy in hydro
- Saturates around $\tau=2.5~{\rm fm}$ as minijets thermalize

- Fragmented (un-thermalized) partons can be a significant source of hadrons
- More likely for peripheral collisions where partons escape un-quenched

$oldsymbol{ ho}_{\min}^{\mathrm{J}}$	$\langle extsf{N}_{ m frag.}/ extsf{N}_{ m total} angle_{0-5\%}$	$\langle \textit{N}_{ m frag.}/\textit{N}_{ m total} angle_{40-50\%}$
4 GeV	0.077(1)	0.252(3)
7 GeV	0.0125(5)	0.033(2)
10 GeV	0.0042(3)	0.014(2)

Effects on bulk evolution - Cooling

- Fraction of energy frozen out of a 145 MeV hypersurface as a function of τ for 30-40% centrality
- System cools down faster as minijets drag energy with them

Effects on bulk evolution - Flow

Flow develops faster

Vanderbilt University Mayank Singh 13/17

Effects on bulk evolution - Viscosity

 Consequent rescaling of shear reduces viscosity

Vanderbilt University Mayank Singh 14/17

Differential spectra

- The $p_{\min}^{J} = 4$ GeV case overestimates differential particle yield. Likely overcounting
- Minijets tend to improve agreement with data at intermediate p_T

Vanderbilt University Mayank Singh 15/17

Differential V_n

- Good agreement with differential v_n subject to readjustment of η/s
- Minijets lead to re-tuning of shear viscosity

Conclusions and Outlook

- Minijets can significantly modify the bulk evolution of QGP medium and modify the extracted transport coefficients
- It will be preferable to account for minijets in Bayesian model-to-data comparisons
- Model can be improved by adding pre-equilibrium energy loss lpp et al., PLB 2020;
 Carrington et al., PRC 2022
- More fluctuation sensitive observables like event=plane correlators need to be evaluated
- It will be interesting to see the effect of modified hydro on jet-quenching (computationally expensive)
- Modified hydro will affect electromagnetic observables

Vanderbilt University Mayank Singh 17/17