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Standard picture of heavy-ion collisions

MADAI Collaboration, H Petersen, J Bernhard

Bulk of partons in colliding nuclei are produced at saturation scale Qs and undergo
hydrodynamic expansion
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Intermediate Energy Partons

• Partons with p > Qs created by initial scatterings
• The processes are perturbative
• They can split and shower
• Randomly oriented in space adding additional
source of fluctuations

• Number proportional to Ncoll

Number of minijets depends strongly on the minimum
pT being considered. For p > 20 GeV, there is less than

one jet pair per event
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Intermediate Energy Partons

The number grows as one considers smaller and smaller pT
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Need for concurrent evolution

• Bulk matter composed of partons near saturation scale Qs ≈ 2 GeV at LHC
• Minijets thermalization time longer than the typical hydro start time of 0.2 to 1.5
fm

• Evolution and thermalization of minijets need to be done concurrent to the
hydrodynamic evolution
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Initial state

Schenke, Tribedy, Venugopalan, PRL 2012

• Soft particles below saturation scale Qs are
initialized by IP-Glasma

• Matched to hydro at τ0 = 0.4 fm
TµνIPGlasma(τ0) = Tµνhydro(τ0)

• Hard particles with p > pJ
min initialized using

hard processes in PYTHIA

Vanderbilt University Mayank Singh 6/17



Hydrodynamics

• Viscous 3+1 D relativistic hydro
equations with source terms solved
using MUSIC

∂νTµν = Jµ

• Temperature dependent ζ/s and a
constant η/s are used
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• Energy loss of minijets governed by
hybrid strong weak coupling model
Casalderrey-Solana et al. JHEP 2014

• Lost energy-momentum is written in
form of a current convoluted with a
gaussian

Jµ =
∑
i

∆Pµi
∆τ(2π)3/2σ2

xσητ
e
−∆x2i +∆y2i

2σ2
x

−∆η2i
2σ2

η

Vanderbilt University Mayank Singh 7/17



Hadronization

• Thermal medium incorporating initial thermalized energy (from IP-Glasma) and
the energy deposited by minijets hadronized using Cooper-Frye

• Minijet partons close to hypersurface hadronize by forming color neutral strings
with a sampled thermal parton

• Remaining “corona” partons hadronize with one another
• All hadrons cascade in UrQMD

Similar approaches
• EKRT: Eskola, Kajantie, Ruuskanen, Tuominen, NPB (2000)
• Tachibana et al. (JETSCAPE), QM 2022
• Yan, Jeon, Gale, PRC 2018
• Kanakubo, Tachibana, Hirano, PRC 2020
• Ke, Wang, JHEP 2021
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Parameters
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• Minimal
tuning
needed to
explain
data. Same
parameter
fits all
centralities

pJ
min sfactor η/s

4 GeV 0.45 0.02
7 GeV 0.82 0.1
10 GeV 0.9 0.125
No Jets 0.915 0.13

• The overall normalization of initial entropy in hydro,
the sfactor, needs to be adjusted to account for
entropy contribution from minijets

• Shear viscosity is adjusted to account for
additional fluctuations
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Effect on bulk evolution

Isotherms at
220 MeV (red)
195 MeV (yellow)
170 MeV (green)
145 MeV (blue)
Leads to a spikier evolution
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Effect on bulk evolution - Energy contribution
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• Ratio of energy injected from
minijets to total energy in
hydro

• Saturates around τ = 2.5 fm
as minijets thermalize

• Fragmented (un-thermalized)
partons can be a significant
source of hadrons

• More likely for peripheral
collisions where partons escape
un-quenched

pJ
min ⟨Nfrag./Ntotal⟩0−5% ⟨Nfrag./Ntotal⟩40−50%

4 GeV 0.077(1) 0.252(3)
7 GeV 0.0125(5) 0.033(2)
10 GeV 0.0042(3) 0.014(2)
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Effects on bulk evolution - Cooling
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• Fraction of energy frozen out
of a 145 MeV hypersurface as
a function of τ for 30− 40%
centrality

• System cools down faster as
minijets drag energy with
them
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Effects on bulk evolution - Flow
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• Flow develops faster
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Effects on bulk evolution - Viscosity
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• Consequent
rescaling of shear
reduces viscosity
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Differential spectra
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• The pJ
min = 4 GeV

case overestimates
differential particle
yield. Likely
overcounting

• Minijets tend to
improve agreement
with data at
intermediate pT
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Differential vn

• Good agreement
with differential vn
subject to
readjustment of η/s

• Minijets lead to
re-tuning of shear
viscosity
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Conclusions and Outlook

• Minijets can significantly modify the bulk evolution of QGP medium and modify
the extracted transport coefficients

• It will be preferable to account for minijets in Bayesian model-to-data
comparisons

• Model can be improved by adding pre-equilibrium energy loss Ipp et al., PLB 2020;

Carrington et al., PRC 2022

• More fluctuation sensitive observables like event=plane correlators need to be
evaluated

• It will be interesting to see the effect of modified hydro on jet-quenching
(computationally expensive)

• Modified hydro will affect electromagnetic observables
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