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Motivation: unexpected results in HF hadrochemistry in pp collisions
Basic ideal: small fireball undergoing /ocal color neutralization (LCN)
Model implementation and initial-state description

Predictions for charmed-hadron production

Small QGP droplet vs color-reconnections: really different pictures?

Further perspectives

Yn collaboration with D. Pablos, A. De Pace, F. Prino, M. Monteno and M. Nardi. For details see

Eur.Phys.J.C 82 (2022) 7, 607 and 2306.02152 [hep-ph]
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The experimental motivation: HF production in pp collisions
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@ Strong enhancement of charmed baryon/meson ratio, incompatible with hadronization
models tuned to reproduce e™ e~ data. Breaking of factorization of hadronic

cross-sections in pp collisions
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@ Strong enhancement of charmed baryon/meson ratio, incompatible with hadronization
models tuned to reproduce e™ e~ data. Breaking of factorization of hadronic
cross-sections in pp collisions
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@ Recent theory attempts to explain the data either based on Color Reconnection (CR) or
on the formation of a small fireball: really different pictures?
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Local Color Neutralization (LCN): basic ideas

Even in pp collision a small deconfined fireball is formed. Around the
QCD crossover temperature quarks undergoes recombination with the
closest opposite color-charge (antiquark or diquark).

@ Why? screening of color-interaction, minimization of energy
stored in confining potential

@ Implication: recombination of particles from the same fluid cell
— Space-Momentum Correlation (SMC), recombined partons
tend to share a common collective velocity
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@ Why? screening of color-interaction, minimization of energy
stored in confining potential

@ Implication: recombination of particles from the same fluid cell
— Space-Momentum Correlation (SMC), recombined partons
tend to share a common collective velocity

Color-singlet structures are thus formed, eventually undergoing decay
into the final hadrons: 2 — 1 — N process

@ Exact four-momentum conservation;

@ No direct bound-state formation, hence no need to worry about
overlap between the final hadron and the parent parton
wave-functions

4/15



Numerical implementation

Once a c quarks reaches a fluid cell at Ty = 155 MeV recombined it with a light antiquark or diquark,
assumed to be thermally distributed (for more details see A.B. et al., 2202.08732 [hep-ph]).

@ Extract the medium particle species according to its thermal weight

TrM? M
n=gsg o K> T—H

5/15



Numerical implementation

Once a c quarks reaches a fluid cell at Ty = 155 MeV recombined it with a light antiquark or diquark,
assumed to be thermally distributed (for more details see A.B. et al., 2202.08732 [hep-ph]).

@ Extract the medium particle species according to its thermal weight

TrM? M
n=gsg o K> T—H

@ Extract its thermal three-momentum in the LRF of the fluid;

5/15



Numerical implementation

Once a c quarks reaches a fluid cell at Ty = 155 MeV recombined it with a light antiquark or diquark,
assumed to be thermally distributed (for more details see A.B. et al., 2202.08732 [hep-ph]).

@ Extract the medium particle species according to its thermal weight

TrM? M
n=gsg o K> T—H

@ Extract its thermal three-momentum in the LRF of the fluid;

© Boost the thermal particle to the LAB frame and recombine it with the HQ, constructing the
cluster C;

5/15



Numerical implementation

Once a c quarks reaches a fluid cell at Ty = 155 MeV recombined it with a light antiquark or diquark,
assumed to be thermally distributed (for more details see A.B. et al., 2202.08732 [hep-ph]).

@ Extract the medium particle species according to its thermal weight

TrM? M
n=gsg o K> T—H

@ Extract its thermal three-momentum in the LRF of the fluid;

© Boost the thermal particle to the LAB frame and recombine it with the HQ, constructing the
cluster C;

@ Evaluate cluster mass Mc. If Mc is smaller than lightest charmed hadron in that channel (~10%
cases) go back to point 1, otherwise go to point 5;

5/15



Numerical implementation

Once a c quarks reaches a fluid cell at Ty = 155 MeV recombined it with a light antiquark or diquark,
assumed to be thermally distributed (for more details see A.B. et al., 2202.08732 [hep-ph]).

@ Extract the medium particle species according to its thermal weight

TrM? M
n=gsg o K> T—H

@ Extract its thermal three-momentum in the LRF of the fluid;

© Boost the thermal particle to the LAB frame and recombine it with the HQ, constructing the
cluster C;

@ Evaluate cluster mass Mc. If Mc is smaller than lightest charmed hadron in that channel (~10%
cases) go back to point 1, otherwise go to point 5;

@ Introduce intermediate cutoff Myax &~ 4 GeV (as in HERWIG) and simulate cluster decay,
depending on its invariant mass:

5/15



Numerical implementation

Once a c quarks reaches a fluid cell at Ty = 155 MeV recombined it with a light antiquark or diquark,
assumed to be thermally distributed (for more details see A.B. et al., 2202.08732 [hep-ph]).

@ Extract the medium particle species according to its thermal weight

TrM? M
n=gsg o K> T—H

@ Extract its thermal three-momentum in the LRF of the fluid;

© Boost the thermal particle to the LAB frame and recombine it with the HQ, constructing the
cluster C;

@ Evaluate cluster mass Mc. If Mc is smaller than lightest charmed hadron in that channel (~10%
cases) go back to point 1, otherwise go to point 5;

@ Introduce intermediate cutoff Myax &~ 4 GeV (as in HERWIG) and simulate cluster decay,
depending on its invariant mass:

o Light clusters (Mc < Mp,.x) undergo isotropic two-body decay in their own rest
frame, as in HERWIG;

5/15



Numerical implementation

Once a c quarks reaches a fluid cell at Ty = 155 MeV recombined it with a light antiquark or diquark,
assumed to be thermally distributed (for more details see A.B. et al., 2202.08732 [hep-ph]).

@ Extract the medium particle species according to its thermal weight
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n=gsg o K> T—H

@ Extract its thermal three-momentum in the LRF of the fluid;

© Boost the thermal particle to the LAB frame and recombine it with the HQ, constructing the
cluster C;

@ Evaluate cluster mass Mc. If Mc is smaller than lightest charmed hadron in that channel (~10%
cases) go back to point 1, otherwise go to point 5;
@ Introduce intermediate cutoff Myax &~ 4 GeV (as in HERWIG) and simulate cluster decay,

depending on its invariant mass:

o Light clusters (Mc < Mp,.x) undergo isotropic two-body decay in their own rest
frame, as in HERWIG;

o Heavier clusters (M¢ > Max) undergo string fragmentation into N hadrons, as in
PYTHIA.
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Cluster mass distribution
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@ Cluster mass distribution is steeply falling, most clusters are light and undergo a two-body

decay C — he + 7/7;

@ This arises from Space-Momentum Correlation: charm momentum usually parallel to fluid

velocity — recombination occurs locally between quite collinear partons;
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Cluster mass distribution
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@ Cluster mass distribution is steeply falling, most clusters are light and undergo a two-body
decay C — he + 7 /7;
@ This arises from Space-Momentum Correlation: charm momentum usually parallel to fluid

velocity — recombination occurs locally between quite collinear partons;

@ Cross-check: remove SMC by randomly selecting light parton from a different point on
the FO hypersurface — long high-M tail
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Results in AA collisions
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@ Enhanced HF baryon-to-meson ratios up to intermediate pr nicely reproduced, thanks to
formation of small invariant-mass charm-+diquark clusters

@ Smooth approach to efe™ limit (AL /D% ~ 0.1) at high pr: high-M_ clusters fragmented
as Lund strings, as in the vacuum
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Addressing pp collisions...
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@ EBE pp initial conditions generated with TrENTo and evolved with hydro codes (MUSIC and

ECHO-QGP);
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@ EBE pp initial conditions generated with TrENTo and evolved with hydro codes (MUSIC and
ECHO-QGP);

@ Perfect correlation between initial entropy (dS/dy) and final particle multiplicity (dNew/dn),
S~ 7.2N.,. P(Ng) satisfying KNO scaling nicely reproduced;
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Addressing pp collisions...
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@ EBE pp initial conditions generated with TrENTo and evolved with hydro codes (MUSIC and
ECHO-QGP);

@ Perfect correlation between initial entropy (dS/dy) and final particle multiplicity (dNew/dn),
S~ 7.2N.,. P(Ng) satisfying KNO scaling nicely reproduced;

@ Samples of 10° minimum-bias ((dS/dy)wm1, ~ 37.6, tuned to experimental (dN.,/dn)) and
high-multiplicity ((dS/dy)o_19 =~ 187.5) events used to simulate HQ transport.and hadronization.

x um
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Why in-medium hadronization also in pp?
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QQ production biased towards hot spots of highest multiplicity events
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Why in-medium hadronization also in pp?
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Why in-medium hadronization also in pp?
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QQ production biased towards hot spots of highest multiplicity events — only about 5% of
QQ pairs initially found in fluid cells below T,
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Results in pp: particle ratios
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First results for particle ratios?:
@ POWHEG+PYTHIA standalone strongly underpredicts baryon-to-meson ratio

@ Enhancement of charmed baryon-to-meson ratio qualitatively reproduced if
propagation+hadronization in a small QGP droplet is included

@ Multiplicity dependence of radial-flow peak position (just a reshuffling of the momentum,
without affecting the yields): (u1)™P & 0.33, (uy )20 ~ 0.53, (u) )91 ~ 0.66

2In collaboration with D. Pablos, A. De Pace, F. Prino et al., 2306.02152 {hep-phj
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Results in pp: elliptic flow
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Response to initial elliptic eccentricity ({e2)™P a2 (e)™P~0.31) — non-vanishing v, coefficient

@ Differences between minimum-bias and high-multiplicity results only due to longer time
spent in the fireball ({71)™P~1.95 fm/c vs (7)™ ~2.92 fm/c)

@ Mass ordering at low pr (Mgq > Mg)

@ Sizable fraction of v, acquired at hadronization
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Relevance to quantify nuclear effects
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@ Slope of the spectra in pp collisions better described including medium effects
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@ Slope of the spectra in pp collisions better described including medium effects

@ Inclusion of medium effects in minimum-bias pp benchmark fundamental to better
describe charmed hadron Raa, both the radial-flow peak and the species dependence
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Looking for alternative (?) explanations: Color Reconnection (CR)
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Charmed baryon enhancement in pp collisions can be accounted for either assuming the

formation of a small fireball or, in PYTHIA, introducing the possibility of color-reconnection

(CR).
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Looking for alternative (?) explanations: Color Reconnection (CR)
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Charmed baryon enhancement in pp collisions can be accounted for either assuming the
formation of a small fireball or, in PYTHIA, introducing the possibility of color-reconnection
(CR). Strings have a finite thickness, in a dense environment they can overlap and give rise to
a rearrangement of color connections to minimize their length (i.e. their invariant mass).
Analogous possibility implemented in HERWIG. CR vs LCN in a small fireball: two really
different pictures? Effect on the cluster mass distribution is the same.
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CR = no QGP formation?

Earth to Scale

Most violent phenomena astrophysical phenomena associated to magnetic reconnections:
sudden conversion of energy stored in the B-field into kinetic energy of the plasma particles
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CR = no QGP formation?

Earth to Scale

Most violent phenomena astrophysical phenomena associated to magnetic reconnections:
sudden conversion of energy stored in the B-field into kinetic energy of the plasma particles

@ Still not completely understood in the case of electrodynamic plasmas

@ however, the existence of a plasma with finite electric resistivity (either from collisions of
from a collective flow) looks a necessary condition for magnetic reconnection to occur

Is CR possible without the formation of a QGP with finite color conductiyity?
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production biased towards hot spots of the highest-multiplicity events

@ Independent, strong indications that the collective phenomena observed in small systems
have the same origin as those measured in heavy-ion collisions

@ Do alternative explanations really exclude the formation of a small deconfined fireball?

@ Extension to pA collisions and to beauty production in progress
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