

Universiteit Utrecht

Probing parton formation times with $g o c \bar{c}$ splitting

Towards a spatio-temporal view of a parton shower

Based on 2203.11241 (JHEP), 2209.13600 and to appear

Wilke van der Schee Quark Matter 2023, Houston September 2023

Gluon to c-cbar splitting

Illuminating the *spatio-temporal structure* of parton showers

Does the gluon split within the medium (~8 femtometer)?

- Vacuum: usual momentum-space picture
- The QGP can provide a `measurement', much like observations in the two-split experiment

Pathlength dependent radiation rate

Rate of gluons radiating fraction *x* from a quark

BDMPS-Z formation time in three approximations:

- AMY: infinite medium, no formation time
- \circ N = 1: single scattering, accurate at early times
- H.O.: good approximation at late time

N = 1 approximation (GLV)

$$\tau_f = \frac{2E_g}{Q_1^2} \qquad 1 - \frac{\tau_f}{L} \sin\left(\frac{L}{\tau_f}\right)$$

$$\left(\frac{1}{Q^2}P_{g\to c\bar{c}}\right)_{N=1}^{\mathrm{med}} = \frac{1}{2}n_0L\int\frac{d\mathbf{q}}{(2\pi)^2}|a_3(\mathbf{q},z)|^2\left(1-\frac{\tau_f}{L}\sin\left(\frac{L}{\tau_f}\right)\right) \right) \qquad \qquad \text{Scatterings + interference term}$$
 Full form
$$g\to c\bar{c} \qquad \qquad \times \left[\left(\frac{1}{Q^2}P_{g\to c\bar{c}}\right)_{\kappa\to\kappa+\mathbf{q}}^{\mathrm{vac}} - \left(\frac{1}{Q^2}P_{g\to c\bar{c}}\right)^{\mathrm{vac}} \right] \qquad \qquad \text{Shifting of momentum (broadening)}$$

$$+ \left(\frac{1}{Q_1^2} - \frac{1}{Q^2}\right)^2 \frac{m_c^2}{2z(1-z)} + \left(\frac{(\kappa+\mathbf{q})}{Q_1^2} - \frac{\kappa}{Q^2}\right)^2 \frac{z^2 + (1-z)^2}{2z(1-z)} \right] \qquad \text{Enhanced production}$$

- $n_0 L$: number of scattering centres encountered
- $\circ |a_3(\mathbf{q},z)|$ cross section for scattering with medium parton with momentum \mathbf{q}
- $\circ \left(\frac{1}{Q^2}P_{g \to c\bar{c}}\right)_{\kappa \to \kappa + \mathbf{q}}^{\mathrm{vac}}$: vacuum splitting function, but with transverse momentum broadened by \mathbf{q}
- Q (Q₁): virtuality of parent gluon after (before) medium interactions

The interference term

$$z = 0.4$$

z = 0.05

Looks somewhat deceptively simple:

$$\frac{1}{2}n_0 L \int \frac{d\mathbf{q}}{(2\pi)^2} |a_3(\mathbf{q}, z)|^2 \left(1 - \frac{\tau_f}{L} \sin\left(\frac{L}{\tau_f}\right)\right)$$
$$\tau_f = \frac{2E_g}{Q^2} = \frac{2E_g z(1-z)}{m^2 + \kappa^2}$$

- Proportional to density, length
- No scatterings before the (vacuum-like) splitting
- Charm mass is essential: cuts of low **q** limit
- Larger effect for democratic splittings (z = 1/2)

$$\omega \frac{d(I_g - I_{vac})}{d\omega} = \frac{\alpha}{\pi} x P_{s \to g}(x) \log |\cos(L\sqrt{\frac{C_A(1-x) + x^2 C_s}{2ix(1-x)E}} \hat{q})| \qquad x = \omega/E$$

$$P_{g \to gg}(x) = C_A \frac{1 + x^4 + (1 - x)^4}{x(1 - x)}$$

Multiple soft scatterings

Can be solved analytically for arbitrary # gluons:

$$x = z$$
$$\omega = k$$

- Non-trivial length dependence: $\int d\omega \omega \frac{d(I_g I_{vac})}{d\omega} \sim L^2 T^3$ (both regimes) $(\omega_{kink} \ll E)$
- Can easily be generalised to evolving mediums
- Important caveat: approximation does not work well for small lengths...

$$\omega \frac{d(I_g - I_{vac})}{d\omega} = \frac{\alpha}{\pi} x P_{s \to g}(x) \log |\cos(L\sqrt{\frac{C_A(1-x) + x^2 C_s}{2ix(1-x)E}} \hat{q})| \qquad x = \omega/E$$

$$P_{g \to gg}(x) = C_A \frac{1+x^4+(1-x)^4}{x(1-x)}$$

Multiple soft scatterings

Can be solved analytically for arbitrary # gluons:

- $|a(\mathbf{q})|^2 \propto \frac{1}{(\frac{1}{2}A^2 + \mathbf{q}^2)^2} \to e^{-\mathbf{q}^2/A^2}$
 - $\begin{vmatrix} x = z \\ \omega = k \end{vmatrix}$

- Non-trivial length dependence: $\int d\omega \omega \frac{d(I_g I_{vac})}{d\omega} \sim L^2 T^3$ (both regimes) $(\omega_{kink} \ll E)$
- Can easily be generalised to evolving mediums
- Important caveat: approximation does not work well for small lengths...

$$\omega \frac{d(I_{q\bar{q}} - I_{vac})}{d\omega} = \frac{\alpha}{\pi} x P_{g \to q\bar{q}}(x) \log|\cos(L\sqrt{\frac{(C_F - x(1-x)C_A}{2ix(1-x)E}}\hat{q})| \qquad x = \omega/E$$

$$P_{g \to c\bar{c}}(x) = t_F(x^2 + (1-x)^2) + m_c^2/Q^2 \approx 1/2$$

Multiple soft scatterings

Generalised to quark-antiquark pairs:

- No IR-divergence, stronger length dependence
- Lower cut off in IR at twice the charm mass (green line)

Some D meson basics

Charm and D meson production

- ~Few percent: Hard scattering
- ∘ ~1/4: B-meson decays
 - Can in principle be removed as background
- ~1/3: Flavour excitation / initial state radiation
- ~1/2: Gluon splitting
 - Can identify gluon splitting by doubly-tagged D meson jets:

Turn off B decays:

How to identify the charms experimentally?

Charms decay to D-mesons: focus on D_o for relatively clean decay channel

Ideally we need:

- Energy of the gluon, angular distance charm-anticharm, ratio energies charm/anticharm
 - Equivalently: E, Q and z

First obvious strategy: identify D-mesons with charms:

Shift virtuality by difference charm/D mass

Underestimates virtuality significantly

→ c branches into more particles than D

How to identify the charms experimentally?

Charms decay to D-mesons: focus on D_o for relatively clean decay channel

Second relatively obvious strategy:

- Find subjets with C/A reclustering until two subjets have one D meson
- No grooming necessary (but worry about IRC safety?)

Works much better at high p_T
Relatively good angle

Gluon splitting and modified FlavourCone

FlavourCone is a simple algorithm:

- Flavoured hadrons provide seeds
- Particles are clustered to closest seed within distance R

Turns out small modification needed:

• Take radius R to be half-distance between the D mesons

Two subtleties: works less well at small z (see back-up), harder to find estimate for gluon energy

Medium modification: total integrated enhancement

A reweighting prescription for medium modification:

$$w_{event} = 1 + \frac{P_{med}}{P_{vac}}$$

Enhancement decreases towards high p_T

$$\tau_f = \frac{2E_g}{Q^2} = \frac{2E_g z(1-z)}{m^2 + \kappa^2}$$

Medium modifications for Q

A reweighting prescription for medium modification:

$$w_{event} = 1 + \frac{P_{med}}{P_{vac}}$$

Virtuality distribution at fixed $\hat{q}L$:

- Enhanced and broadened (shift to higher Q)
- Strong length dependence for large E, small Q and high z (~long formation time)
- Optimal energy ~20-40 GeV for length dependence

Gluon to ccbar as a probe into the spacetime structure of the parton shower

- Reviewed formation time in parton showers
 - Should be significantly less medium modification for small path lengths (keeping $\hat{q}L$ fixed)
- How to identify a charm?
 - Tried three approaches; remarkable success with modified FlavourCone
- A reweighting prescription for medium modifications
 - Enhancement and broadening that sensitively depend on the path length

Ccbar in a jet unique observable: direct access to a splitting with interesting QGP modification

20 to 40 GeV optimal range to see length dependence

The ideal playground for the formation time will be PbPb + OO collisions (vary L, fix $\hat{q}L$)

Many things to improve for realistic modelling

- 1. Realistically evolving medium (hydrodynamics)
- 2. Full medium modified parton shower with formation time
- 3. Smoking gun signal for the formation time?

Back-up

Inclusive gluon splitting with C/A and FlavourCone

More difficult to estimate splittings with *small z* (e.g. high virtuality) (less relevant for formation time)

Importance of charm mass

Toy computation; take N=1 medium splitting function, but with m = 0. Much larger effects, and larger length dependence (formation time longer)

Medium modifications

Similar results in multiple soft/harmonic oscillator approximation:

