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DIRECT PHOTONS AND HIC MODELLING
 Unlike hadrons, photons(*) are emitted throughout the 

entire space-time history of the HIC 

Late stage reactions 

Decay photonspQCD photons


“primordial” photons

“Plasma photons”

“Hadronic medium photons”

“Pre-eq. photons”
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(*) Real & virtual
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Info Carried by the thermal radiation 

Emission rates:

(photons)
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Thermal ensemble average of the current-current correlator

Feinberg (76); McLerran, Toimela (85); Weldon (90); Gale, Kapusta (91) 
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Im Πμν = ρμν = ℙT
μν ρT + ℙL

μν ρL

dΓℓℓ̄

dωd3k ∼ ρV = ρμ
μ = 2 ρT(ω, k) + ρL(ω, k)

ρV = NcM2

4π
2T
k

ln [ 1 + e−(ω+k)/2T

1 + e−|ω−k|/2T ] + Θ(M2)LO: 

G. Jackson 
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Going from LO to NLO

ImLO:

NLO: Im

+ …

Arnold, Moore, Yaffe JHEP (2001); 

Aurenche, Gélis, Moore, Zaraket JHEP (2002)

LPM:

Im Πμν → ∼ *(αs)n
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QGP dilepton rates @ NLO in FTFT , in a variety of limits:
 Altherr, Aurenche, Z. Phys. C (1989)

 Braaten, Pisarski, Yuan, PRL (1990)

 Aurenche, Gélis, Moore, Zaraket, JHEP (2002) [LPM]

 Ghiglieri, Moore, JHEP (2014)

M ∼ πT, k = 0
M ∼ gT, k = 0
M ∼ gT, k ≳ gT
M ∼ πT, k ∼ πT

 On the lattice Ding et al., PRD (2011); 

Ghiglieri, Kaczmarek, Laine, Meyer, PRD (2016)


Hadronic rates Rapp, Wambach, Adv. Nucl. Phys (2000)

C. Gale, Landolt-Bornstein (2010)

. . . 

@ 2 loops, a set of master integrals for general kinematics:

M. Laine, JHEP (2013)

G. Jackson, PRD (2019)


To interpolate between small and large :M
ρ |NLO = ρ1−loop + ρ2−loops + (ρfull

LPM − ρexpanded
LPM ) Ghisoiu and Laine, JHEP (2014)
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m2
D ≡ g2 [( 1

2 nf + Nc) T2

3 + nf
μ2

2π2 ], m2
∞ ≡ g2 CF

4 (T2 + μ2

π2 ) Churchill, Du, Forster, Jackson, 
Gale, Gao, Jeon, (2023)
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Large NLO correction at low M

μB = 0 μB ≠ 0

NLO correction gives even for 
1 GeV < M < 3 GeV

≳ 10 % Growing : enhancement at low M, 
suppression at intermediate M

μB

Dumitru et al., PRL (1993) [LO]

Traxler, Vija, Thoma, PLB (1995)

Gervais, Jeon, PRC (2012)

C. Shen et al., 2307.08498

 

}γ
What do we know at NLO and  ?μB ≠ 0

μB ≠ 0
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Im Πμν = ρμν = ℙT
μν ρT + ℙL

μν ρL

dΓℓℓ̄

dωd3k ∼ ρV = ρμ
μ = 2 ρT(ω, k) + ρL(ω, k)

Some interesting features seen in the spectral densities 
(more on this later)

… but net  effect on spectra not 
large

μB

(k /T = 2π)

ρL = − M2

k2 ρ00

ρT = 1
2 (ρμ

μ + M2

k2 ρ00)

Weldon. PRD (1990); Gale, Kapusta Nucl. Phys. B (1991)

LO
LO + NLO
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Integrating the rates with a realistic hydro

MUSIC+iS3D+UrQMD

Denicol, Gale, Jeon, Monnai, Schenke, Shen, PRC (2018)

Shen, Alzhrani, PRC (2020)

Du, Gao, Jeon, Gale, 2302.13852

Initial state (pre-hydro) profile adjusted to data

Hydro performance with hadronic observables is good



Charles Gale 
McGillQM 2023

10

What is plotted is “Excess”= 
(Data - cocktail)/(dNch/dy)

(Cocktail = radiative decays + + DY)cc̄

 In most cases, within data uncertainty 
limits


 Next step: calculate the cocktail and add 
to thermal contribution


 Data at low M is dominated by hadronic 
contributions not included here


 First estimate of NLO dilepton emission 
with finite , using hydrodynamics μB

Data: Abhdulhamid et al. (STAR), PRC (2023)

Now comparing with dilepton data from the reduced energy runs
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Putting EM probes to work
 Real photon spectrum is sensitive to local T and to blue shift: informs the modelling

 Virtual photon spectrum is invariant, but “T” depends on some details

Those two are complementary

The y-axis is 

The effective T is extracted from slope, 
considering 

ln {dN/dM × M−3/2}
1 GeV < M < 3 GeV
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Evaluating the efficacy of the dilepton thermometer

 Bands represent the temperature spread in hydro cells

 Dots are effective T read off the dilepton spectrum

 Dilepton  increases with colliding energy

 We see that 

Teff
Tfinal < Teff < Tinitial
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Putting all of this together

Combining all energies and centralities, the initial 
temperature in the fluid dynamical model 
correlates well with the effective temperature 
extracted from the dilepton spectrum
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Dileptons: very good for temperature extraction, less so for baryon number?

Return to the emission rate
Im Πμν = ρμν = ℙT

μν ρT + ℙL
μν ρL

dΓℓℓ̄

dωd3k ∼ ρV = ρμ
μ = 2 ρT(ω, k) + ρL(ω, k)

 The “double-differential” spectral 
densities are rich in features


 Large quantitative difference in 
polarizations, going from LO to NLO


 Up to a 10-20% difference between 
values of 
μB
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B. Forster 2023 

Rates

Polarization contains lot of info that is difficult to obtain otherwise
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Conclusions

 First results for dilepton emission rates at NLO with  

 Implemented these in a hydrodynamical model at BES energies and above

 Combined with realistic dynamical modelling, measurements of dilepton spectra 

constitute a clean probe of early temperatures

 Dilepton polarization: promising and discriminating observable

 To do: 

 Pre-equilibrium emission (work on the initial state)

 Rates with transport-coefficients corrections ( )


 Combine with late-stage dilepton emission calculation


 Include dilepton flow evaluation (i.e. )


μB ≠ 0

η and ζ

vn

G. Vujanovic et al. PRC (2018); S. Hauksson PRC (2018) 

A. Elfner et al., HP2023; A. Schäfer et al., PRC (2022) 


