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IntroductionIntroduction

Equation of State of Quark-Gluon Plasma at µ ≥ 0 is important in
heavy-ion phenomenology
Common lore:

A direct lattice simulation is impossible due to sign problem
⇒ only extrapolations from imaginary or zero µ can be used and
different schemes have been proposed

In this talk, we would:
Demonstrate that direct simulation is actually expensive but not
impossible
Compare the extrapolation schemes with direct results at µB > 0

Outline:
Taylor expansion and resummation
Reweighting methods
Comparison with Taylor expansion and resummation
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Simulation: Nf = 2+1 QCD at µB > 0 and T > 0
Grand canonical partition function:

Z = Tr
[
e−(HQCD−µuNu−µdNd−µsNs)/T

]
p =

T
V

ln Z ≡ p̂ T4

Scenario considered in this talk:
µ̂q T ≡ µq ≡ µu = µd =

1
3

µB, µs = 0

Observables of interest:
Light quark density n̂L ≡ ∂ p̂

∂ µ̂q

Susceptibility χ l
n =

∂ np̂
∂ µ̂n

q
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Taylor expansionTaylor expansion

p̂ and its derivatives can be expanded in Taylor series in µ̂q

p̂(T, µ̂B) = p0(T)+p2(T)µ̂2
B +p4(T)µ̂4

B + . . .

Taylor coefficients can be obtained as:
Moments at µB = 0 simulation (e.g.[A. Bazavov et al, Phys. Rev. D 101, 074502(2020)])

Fit parameters from simulations at a series of imaginary values of µB
(e.g. [ M D’Elia et al, Phys. Rev. D 95, 094503 (2017)])
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Resummations with shifting methodsResummations with shifting methods

Empirical observation: There is an approximate scaling variable
T(1+κµ̂2

B) such that [S. Borsanyi et al, Phys. Rev. Lett. 126 232001 (2021)]

χB
1

µ̂B
=

n̂L(T, µ̂B)

µ̂B
=

dn̂L

dµ̂B
(T(1+κ2(T)µ̂2

B + . . .),0)
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It can be made more applicable to higher T by normalizing with the
Stefan-Boltzmann limit [S. Borsanyi et al, Phys. Rev. D 105, 114504 (2022)]

n̂L(T, µ̂B)

µ̂B
→ n̂L(T, µ̂B)

n̂SBL
L (µ̂B)
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ReweightingReweighting

Simulation is impossible/hard in target (“t”) action
⇒ reweight from simulated (“s”) action:

⟨O⟩t =

∫
Dφwt(φ)O(φ)∫

Dφwt(φ)
=

∫
Dφws(φ)

wt(φ)
ws(φ)

O(φ)∫
Dφws(φ)

wt(φ)
ws(φ)

=

〈
wt
ws

O
〉

s〈
wt
ws

〉
s

,

Zt

Zs
=

〈
wt

ws

〉
s
,

Zt =
∫

Dφwt(φ), wt(φ) ∈ C, Zs =
∫

Dφws(φ), ws(φ)> 0

Problems getting exponentially hard as V increases:
Sign problem: wt

ws
∈ C

Overlap problem: ρ

(
wt
ws

)
has long tail
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Simulation DetailsSimulation Details

Tree-level Symanzik improved gauge action and 2-step stout
smearing of ρ = 0.15.
N3

s ×Nτ = 163 ×8 at temperatures 145 ≤ T ≤ 240 MeV and
µ̂2

B = 1.5,3,4.5,6,7.5,9
µu = µd = µq = µ = µB/3,µs = 0
Two reweighting schemes are considered:

Reweighting from µB = 0: wt
ws

=
detM(µB)
detM(0)

wt = e−Sg detM(µB), ws = e−Sg detM(0)

Reweighting from Phase Quenched(PQ): wt
ws

= eiθ(µB)

wt = e−Sg | det M(µB) | eiθ(µB), ws = e−Sg | det M(µB) |
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Reweighting schemesReweighting schemes
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Reweighting from µ= 0∫
dµ̂B n̂L∫
dµ̂I n̂I∫
dµ̂I n̂I + 1

V
log(weight)

∆p̂ can be computed in two ways:

∆p̂ =
∫

µ̂B/3

0
n̂I(µ̂q,T)dµ̂q +

1
(LT)3 ln⟨eiθ ⟩PQ, n̂I ≡

(
∂ p̂

∂ µ̂q

)
µI=0

∆p̂ =
∫

µ̂B/3

0
n̂Ldµ̂q =

∫
µ̂B/3

0

1
(LT)3⟨eiθ ⟩PQ

〈
eiθ ∂

∂ µ̂B
lndetM

〉
PQ

dµ̂q

Reweighting from µB = 0 agrees with both estimates
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Reweighting Vs
Taylor expansions and Resummation

Reweighting Vs
Taylor expansions and Resummation

We use the same simulation setup as reweighting simulations, but
here we simulate at µ̂B = {0,4,6,7,8,9,10,12} iπ

16

Taylor coefficients: obtained via d2p̂
dµ̂2

B
and d4p̂

dµ̂4
B

at µB = 0 and fitting
n̂L
µ̂B

with polynomial of order µ̂6
B

Shift method: obtain κ2 and κ4 (λ2 and λ4) from fitting n̂L(T,µ̂B)
µ̂B

( n̂L(T,µ̂B)

n̂SBL
L (µ̂B)

)
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Taylor expansion: agrees with phase-reweighting at NNNLO. It is
true in the whole range of simulated T up to µ̂B ≈ 3(≈ 500MeV)
Shift method: agrees with phase-reweighting in the whole range
Shift method requires coefficients up to µ̂6

B, lower than NNNLO
Taylor which needs µ̂8

B
Exponential Resummation [S. Mondal et al, Phys. Rev. Lett. 128 022001 (2022)] : Alternative
summation method not discussed here
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The shift method with SB correction agrees better with the one
without at higher T , as designed
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It is possible to simulations at real values of µB with reweighting
methods.
By comparison with such simulations in the range of simulated T
values, we have studied the validity of Taylor expansion and Shift
methods.
Taylor expansion NNNLO and Shift methods agree with the
reweighted results, and they work beyond the entire RHIC Beam
Energy Scan 0 ≤ µ̂B ≤ 3
In order to facillitate the studies of the transition line and location
of critical end point, it is essential to extend the validity of the
methods to lower T and higher µ̂B
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Staggered Rooting at µB > 0Staggered Rooting at µB > 0

For Nf = 4, detM(µ̂) can be expressed as follows in the temporal
gauge: [Hasenfratz, Toussaint 1991]

detM(µ̂) = e−3V µ̂
6V

∏
i=1

(
ξi − eµ̂

)
where ξi are 6V = 6NxNyNz eigenvalues of reduced matrix P that

depend only on U and not µ

P =−

Nt−1
∏
i=0

Pi

L, Pi =
(

Bi 1
1 0

)
Bi = η4(D

(3) +am)|t=i , L =

(
U4 0
0 U4

)
|t=Nt−1

Rooting becomes:

[detMl(µ̂)]
1/2 = (detMl(0))1/2

6V

∏
i=1

C

√
ξie

µ̂

2 − e−
µ̂

2

ξi −1

[detM(µ̂)]1/2 therefore has a branchcut that creates ambiguity of
which root is to be taken
Such ambiguity leads to observable numerical consequences [S. Borsanyi

et al, arXiv: 2308.06105] that will not be discussed in this talk. We stay at
values of T and µB where this issue is absent.
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Exponential Resummations[S. Mondal et al, Phys. Rev. Lett. 128 022001 (2022)]Exponential Resummations[S. Mondal et al, Phys. Rev. Lett. 128 022001 (2022)]

The difference between pressures at µB = 0 and finite µB can be
expressed as:

∆p̂(T, µ̂B)≡ p̂(T, µ̂B)− p̂(T,0) =
1

(LT)3 ln
〈

detM(µ̂B)

detM(0)

〉
µ̂B=0

The approximation detM(µ̂B)
detM(0) ≈ exp(∑N

n=1
1
n! Dnµ̂n

B) can be done at
some truncation order N:

∆p̂(T, µ̂B)≈
1

(LT)3 ln

〈
exp

(
N

∑
n=1

1
n!

Dnµ̂
n
B

)〉
µ̂B=0

Dn ≡ ∂ n

∂ µ̂n
B

lndetM(µ̂B) is also needed in Taylor coefficients p2n,
thus is obtained for free if the latter is already computed.
Dn is computed exactly for each configuration using the reduced
matrix formalism [Hasenfratz, Toussaint 1991]
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