Equation of state of a hot-and-dense quark gluon plasma: lattice simulations at real μ_{B} vs. extrapolations Chik Him (Ricky) Wong ${ }^{1}$

Equation of state of a hot-and-dense quark gluon plasma: lattice simulations at real μ_{B} vs. extrapolations

Introduction
[Phys. Rev. D 107, L091503]
Chik Him (Ricky) Wong ${ }^{1}$
S. Borsányi ${ }^{1}$, Z. Fodor ${ }^{1,2,3,4,5}$, M. Giordano ${ }^{4}$,
J. Guenther ${ }^{1}$, S. Katz ${ }^{4,6}$, A. Pásztor ${ }^{4}$

1: Wuppertal University
2: Pennsylvania State University
3: Jülich Supercomputing Centre
4: ELTE Eötvös Loránd University
5: University of California, San Diego
6: MTA-ELTE Theoretical Physics Research Group

Quark Matter 2023

Introduction

- Equation of State of Quark-Gluon Plasma at $\mu \geq 0$ is important in heavy-ion phenomenology
- Common lore:
- A direct lattice simulation is impossible due to sign problem
- \Rightarrow only extrapolations from imaginary or zero μ can be used and different schemes have been proposed
- In this talk, we would:
- Demonstrate that direct simulation is actually expensive but not impossible
- Compare the extrapolation schemes with direct results at $\mu_{B}>0$
- Outline:
- Taylor expansion and resummation
- Reweighting methods
- Comparison with Taylor expansion and resummation
- Simulation: $N_{f}=2+1$ QCD at $\mu_{B}>0$ and $T>0$
- Grand canonical partition function:

$$
\begin{aligned}
Z & =\operatorname{Tr}\left[e^{-\left(H_{\mathrm{QCD}}-\mu_{u} N_{u}-\mu_{d} N_{d}-\mu_{s} N_{s}\right) / T}\right] \\
p & =\frac{T}{V} \ln Z \equiv \hat{p} T^{4}
\end{aligned}
$$

- Scenario considered in this talk:

$$
\hat{\mu}_{q} T \equiv \mu_{q} \equiv \mu_{u}=\mu_{d}=\frac{1}{3} \mu_{B}, \mu_{s}=0
$$

- Observables of interest:
- Light quark density $\hat{n}_{L} \equiv \frac{\partial \hat{p}}{\partial \hat{\mu}_{q}}$
- Susceptibility $\chi_{n}^{l}=\frac{\partial^{n} \hat{p}}{\partial \hat{\mu}_{4}^{n}}$

Equation of state of a hot-and-dense quark gluon plasma: lattice simulations at real μ_{B} vs. extrapolations Chik Him (Ricky) Wong ${ }^{1}$

Introduction Resummations Reweighting Comparison Summary

Taylor expansion

- \hat{p} and its derivatives can be expanded in Taylor series in $\hat{\mu}_{q}$

$$
\hat{p}\left(T, \hat{\mu}_{B}\right)=p_{0}(T)+p_{2}(T) \hat{\mu}_{B}^{2}+p_{4}(T) \hat{\mu}_{B}^{4}+\ldots
$$

- Taylor coefficients can be obtained as:
- Moments at $\mu_{B}=0$ simulation (e.g. [A. Bazavov etal, Phys. Rev. D 101, 074502(2020))]
- Fit parameters from simulations at a series of imaginary values of μ_{B} (e.g. [M D'Elia et al, Phys. Rev. D 95, 094503 (2017)])

Equation of state of a hot-and-dense quark gluon plasma:

Resummations with shifting methods

- Empirical observation: There is an approximate scaling variable $T\left(1+\kappa \hat{\mu}_{B}^{2}\right)$ such that $[s$. Boranayi i tal. Pyys. Rev. Lett. 126232001 (2021)]

$$
\frac{\chi_{1}^{B}}{\hat{\mu}_{B}}=\frac{\hat{n}_{L}\left(T, \hat{\mu}_{B}\right)}{\hat{\mu}_{B}}=\frac{d \hat{n}_{L}}{d \hat{\mu}_{B}}\left(T\left(1+\kappa_{2}(T) \hat{\mu}_{B}^{2}+\ldots\right), 0\right)
$$

- It can be made more applicable to higher T by normalizing with the Stefan-Boltzmann limit $[s$. Borsamy ital. Phys. Rev. D D Do, 114504 (0022)

$$
\frac{\hat{n}_{L}\left(T, \mu_{B}\right)}{\hat{\mu}_{B}} \rightarrow \frac{\hat{n}_{L}\left(T, \hat{\mu}_{B}\right)}{\hat{n}_{L}^{\mathrm{SBL}}\left(\hat{\mu}_{B}\right)}
$$

- Simulation is impossible/hard in target (" t ") action \Rightarrow reweight from simulated ("s") action:

$$
\begin{aligned}
\langle O\rangle_{t} & =\frac{\int D \phi w_{t}(\phi) O(\phi)}{\int D \phi w_{t}(\phi)}=\frac{\int D \phi w_{s}(\phi) \frac{w_{t}(\phi)}{w_{s}(\phi)} O(\phi)}{\int D \phi w_{s}(\phi) \frac{w_{t}(\phi)}{w_{s}(\phi)}}=\frac{\left\langle\frac{w_{t}}{w_{s}} O\right\rangle_{s}}{\left\langle\frac{w_{t}}{w_{s}}\right\rangle_{s}} \\
\frac{Z_{t}}{Z_{s}} & =\left\langle\frac{w_{t}}{w_{s}}\right\rangle_{s} \\
Z_{t} & =\int D \phi w_{t}(\phi), w_{t}(\phi) \in \mathbb{C}, Z_{s}=\int D \phi w_{s}(\phi), w_{s}(\phi)>0
\end{aligned}
$$

- Problems getting exponentially hard as V increases:
- Sign problem: $\frac{w_{t}}{w_{s}} \in \mathbb{C}$
- Overlap problem: $\rho\left(\frac{w_{t}}{w_{s}}\right)$ has long tail

Equation of state

Simulation Details

- Tree-level Symanzik improved gauge action and 2-step stout smearing of $\rho=0.15$.
- $N_{s}^{3} \times N_{\tau}=16^{3} \times 8$ at temperatures $145 \leq T \leq 240 \mathrm{MeV}$ and $\hat{\mu}_{B}^{2}=1.5,3,4.5,6,7.5,9$
- $\mu_{u}=\mu_{d}=\mu_{q}=\mu=\mu_{B} / 3, \mu_{s}=0$
- Two reweighting schemes are considered:
- Reweighting from $\mu_{B}=0: \quad \frac{w_{t}}{w_{s}}=\frac{\operatorname{det} M\left(\mu_{B}\right)}{\operatorname{det} M(0)}$

$$
w_{t}=e^{-S_{s}} \operatorname{det} M\left(\mu_{B}\right), w_{s}=e^{-S_{g}} \operatorname{det} M(0)
$$

- Reweighting from Phase Quenched(PQ): $\frac{w_{t}}{w_{s}}=e^{i \theta\left(\mu_{B}\right)}$

$$
w_{t}=e^{-S_{g}}\left|\operatorname{det} M\left(\mu_{B}\right)\right| e^{i \theta\left(\mu_{B}\right)}, w_{s}=e^{-S_{B}}\left|\operatorname{det} M\left(\mu_{B}\right)\right|
$$

Equation of state of a hot-and-dense quark gluon plasma:

Reweighting schemes

- $\Delta \hat{p}$ can be computed in two ways:

$$
\begin{aligned}
& \Delta \hat{p}=\int_{0}^{\hat{\mu}_{B} / 3} \hat{n}_{I}\left(\hat{\mu}_{q}, T\right) d \hat{\mu}_{q}+\frac{1}{(L T)^{3}} \ln \left\langle e^{i \theta}\right\rangle_{\mathrm{PQ}}, \hat{n}_{I} \equiv\left(\frac{\partial \hat{p}}{\partial \hat{\mu}_{q}}\right)_{\mu_{I}=0} \\
& \Delta \hat{p}=\int_{0}^{\hat{\mu}_{B} / 3} \hat{n}_{L} d \hat{\mu}_{q}=\int_{0}^{\hat{\mu}_{B} / 3} \frac{1}{(L T)^{3}\left\langle e^{i \theta}\right\rangle_{\mathrm{PQ}}}\left\langle e^{i \theta} \frac{\partial}{\partial \hat{\mu}_{B}} \ln \operatorname{det} M\right\rangle_{\mathrm{PQ}} d \hat{\mu}_{q}
\end{aligned}
$$

Reweighting from $\mu_{B}=0$ agrees with both estimates

Equation of state of a hot-and-dense quark gluon plasma: lattice simulations at real μ_{B} vs. extrapolations

Introduction
Taylor expansion
Resummations
Reweighting
Comparison

Reweighting schemes

- Reweighting from Phase Quenched

Equation of state

- We use the same simulation setup as reweighting simulations, but here we simulate at $\hat{\mu}_{B}=\{0,4,6,7,8,9,10,12\} \frac{i \pi}{16}$
- Taylor coefficients: obtained via $\frac{d^{2} \hat{p}}{d \mu_{B}^{2}}$ and $\frac{d^{4} \hat{p}}{d \mu_{B}^{4}}$ at $\mu_{B}=0$ and fitting $\frac{\hat{\mu}_{L}}{\mu_{B}}$ with polynomial of order $\hat{\mu}_{B}^{6}$
- Shift method: obtain κ_{2} and $\kappa_{4}\left(\lambda_{2}\right.$ and $\left.\lambda_{4}\right)$ from fitting $\frac{\hat{n}_{L}\left(T, \hat{\mu}_{B}\right)}{\hat{\mu}_{B}}$ $\left(\frac{\hat{n}_{L}\left(T, \hat{\mu}_{B}\right)}{\hat{n}_{L}^{\operatorname{sL}}\left(\mu_{B}\right)}\right)$

Equation of state of a hot-and-dense quark gluon plasma: lattice simulations at real μ_{B} vs. extrapolations Chik Him (Ricky) Wong ${ }^{1}$

Introduction
Taylor expansion
Resummations
Reweighting
Comparison

Reweighting Vs

 Taylor expansions and Resummation

- Taylor expansion: agrees with phase-reweighting at NNNLO. It is true in the whole range of simulated T up to $\hat{\mu}_{B} \approx 3(\approx 500 \mathrm{MeV})$
- Shift method: agrees with phase-reweighting in the whole range
- Shift method requires coefficients up to $\hat{\mu}_{B}^{6}$, lower than NNNLO Taylor which needs $\hat{\mu}_{B}^{8}$
- Exponential Resummation [s. Mondal et al., Phys. Rev. Lett. 128022001 (2022)] : Alternative summation method not discussed here

Equation of state of a hot-and-dense quark gluon plasma: lattice simulations at real μ_{B} vs. extrapolations Chik Him (Ricky) Wong ${ }^{1}$

Introduction

Taylor expansion
Resummations

Reweighting

Reweighting Vs

 Taylor expansions and Resummation

- The shift method with SB correction agrees better with the one without at higher T, as designed

- It is possible to simulations at real values of μ_{B} with reweighting methods.
- By comparison with such simulations in the range of simulated T values, we have studied the validity of Taylor expansion and Shift methods.
- Taylor expansion NNNLO and Shift methods agree with the reweighted results, and they work beyond the entire RHIC Beam Energy Scan $0 \leq \hat{\mu}_{B} \leq 3$
- In order to facillitate the studies of the transition line and location of critical end point, it is essential to extend the validity of the methods to lower T and higher $\hat{\mu}_{B}$

Equation of state

Staggered Rooting at $\mu_{B}>0$

- For $N_{f}=4, \operatorname{det} M(\hat{\mu})$ can be expressed as follows in the temporal gauge: [Hasenfrat, Toussaint 1991]

$$
\operatorname{det} M(\hat{\mu})=e^{-3 V \hat{\mu}} \prod_{i=1}^{6 V}\left(\xi_{i}-e^{\hat{\mu}}\right)
$$

where ξ_{i} are $6 \mathrm{~V}=6 N_{x} N_{y} N_{z}$ eigenvalues of reduced matrix P that depend only on U and not μ

$$
P=-\left(\begin{array}{c}
N_{t}-1 \\
i=0
\end{array} P_{i}\right) L, P_{i}=\left(\begin{array}{cc}
B_{i} & 1 \\
1 & 0
\end{array}\right) B_{i}=\eta_{4}\left(D^{(3)}+a m\right)_{t=i}, L=\left.\left(\begin{array}{cc}
U_{4} & 0 \\
0 & U_{4}
\end{array}\right)\right|_{t=N_{t}-1}
$$

- Rooting becomes:

$$
\left[\operatorname{det} M_{l}(\hat{\mu})\right]^{1 / 2}=\left(\operatorname{det} M_{l}(0)\right)^{1 / 2} \prod_{i=1}^{6 V} \sqrt[C]{\frac{\xi_{i} e^{\frac{\mu}{2}}-e^{-\frac{\mu}{2}}}{\xi_{i}-1}}
$$

- $[\operatorname{det} M(\hat{\mu})]^{1 / 2}$ therefore has a branchcut that creates ambiguity of which root is to be taken
- Such ambiguity leads to observable numerical consequences is. Borsanyi ${ }^{\text {et al, axiv: } 2308.061051}$ that will not be discussed in this talk. We stay at values of T and μ_{B} where this issue is absent.

- The difference between pressures at $\mu_{B}=0$ and finite μ_{B} can be expressed as:

$$
\Delta \hat{p}\left(T, \hat{\mu}_{B}\right) \equiv \hat{p}\left(T, \hat{\mu}_{B}\right)-\hat{p}(T, 0)=\frac{1}{(L T)^{3}} \ln \left\langle\frac{\operatorname{det} M\left(\hat{\mu}_{B}\right)}{\operatorname{det} M(0)}\right\rangle_{\hat{\mu}_{B}=0}
$$

- The approximation $\frac{\operatorname{det} M\left(\hat{\mu}_{B}\right)}{\operatorname{det} M(0)} \approx \exp \left(\sum_{n=1}^{N} \frac{1}{n!} D_{n} \hat{\mu}_{B}^{n}\right)$ can be done at some truncation order N :

$$
\Delta \hat{p}\left(T, \hat{\mu}_{B}\right) \approx \frac{1}{(L T)^{3}} \ln \left\langle\exp \left(\sum_{n=1}^{N} \frac{1}{n!} D_{n} \hat{\mu}_{B}^{n}\right)\right\rangle_{\hat{\mu}_{B}=0}
$$

- $D_{n} \equiv \frac{\partial^{n}}{\partial \mu_{B}^{n}} \ln \operatorname{det} M\left(\hat{\mu}_{B}\right)$ is also needed in Taylor coefficients $p_{2 n}$, thus is obtained for free if the latter is already computed.
- D_{n} is computed exactly for each configuration using the reduced matrix formalism Hasenfate, Toussaint 1991]

