30th International Conference on Ultra-relativistic Nucleus-Nucleus Collisions (QM 2023)

Exploring the Freeze-out Hypersurface with a Rapiditydependent Thermal Model

Han Gao

McGill University

Based on Lipei Du, HG, Sangyong Jeon & Charles Gale, 2302.13852 HG, Lipei Du, Sangyong Jeon & Charles Gale, 23xx.xxxx

QCD phase diagram

- Beam energy scan: Mapping out the phase diagram by varying the collision energies.
- Thermal Models: particle multiplicities —> thermodynamics: including Hadron Resonance Gas model (HRG).
- Tools available on the market, e.g. [V. Vovchenko & H. Stoecker, Comput. Phys. Commun. (2019)]

A. Monnai, et al, IJMPA (2021)

Rapidity scan along the freeze-out surface

- Freeze-out surface is not homogenous.
- Rapidity scan: inferring freeze-out thermodynamics for cells at different rapidity η_s from particle yields dN/dy.
- Commonly used practice: using HRG for each rapidity bin independently. See, e.g. [V. Begun, et al, PRC (2018)]

About large rapidity?

- Multistage hydro => freeze-out cells live within a limit range of η_s .
- E.g., right fig. $|\eta_s| < \eta_{max} \approx 2$ for $\sqrt{s} = 19.6$ GeV.
 - Particle yields reach $y \approx 4$
 - How to improve the "commonly used practice" (independent y bins) for large rapidity (tail) region?

Two effects

• Thermal smearing: a thermal source with rapidity y_s contributes to particle yields at other rapidities.

Fig: yields from a resting source (y=0).

Significant smearing effect for lighter particles (e.g. π . smearing width $\Delta y \sim 1$

- Longitudinal boost: Deviation from Bjorken
- Flow as $\sqrt{s} \downarrow : \eta_s < y_{s^*}$ subscript s = source, here FO cells
- Particles produced as a freeze-out cell with small η_s can be boosted to a large rapidity y.

A thermal model with smearing effect + longitudinal flow

- Parametrizing $T(\eta_s) = T_0 + T_2 \eta_s^2 + \dots$, $V(\eta_s), \mu(\eta_s)$;
- Convert cell's space-time rapidity η_s to rapidity y_s by kinematics $\tau u^{\eta} = \alpha \eta_s^3$.
- . For a cell with $y_s=0$, thermal yields worked out as $\dfrac{dN^i}{dy}\equiv K^i(y;T,\mu,V)$. * $i=\pi^+,K^+,p-\bar{p}$
- Integrating over all cells (with different η_s) by

$$\frac{dN^{i}}{dy} = \int_{|\eta_{s}|} d\eta_{s} K^{i}(y - y_{s}(\eta_{s}); T(\eta_{s}), \mu(\eta_{s}), V(\eta_{s}))$$
Longitudinal dynamics

Workflow: implementing the model

"Discrete" v.s. "Continuous" thermal model

Comparison: "discrete" and "continuous" models

- Fit C.-F. yields from a multistage hydro @ 19.6 GeV; longitudinal flow turned off in thermal model. Red/Green lines: two models applied to the same yields.
- Similar (T, μ_B) given around mid-rapidity $|y_s| < 2$ from both models => can safely use the independent-rapidity-bin method for mid-rapidity.

Large uncertainty and unphysical result given by discrete model at large rapidity.

A Bayesian study: Longitudinal dynamics

- A strong correlation between system size η_{max} and flow strength α .
- Flow parameters can still be constrained.
- A positive α is favoured => see longitudinal dynamic from a thermal model!

Effects on yields from the flow

- From hydro profile @19.6 GeV: longitudinal flow $\alpha = 0.04$.
- Fix α but $\eta_{max}=\infty$ => Obtaining $T(\eta_s), \mu(\eta_s), V(\eta_s)$ profile by fitting the Cooper-Frye yields.
- Keeping the $T(\eta_s), \mu(\eta_s), V(\eta_s)$ profile obtained and varying $\alpha =>$ Exploring the role of longitudinal flow

Larger flow => More particles boost to large y from mid rapidity

Coupling between system size and flow

- Now we turn on a finite system size $\eta_{max} = 2 =>$ yields overall smaller => smearing effect manifested.
- Smaller system size can be partially compensated by a stronger flow => coupling between α and η_{max} .

A Bayesian study: Thermodynamics

- Almost isothermal freeze-out surface: $T(\eta_s) = T_0 + T_2 \eta_s^2$ w/ a very small T_2 .
- Large correlation between mid-rapidity temp T_0 and transverse system size V_0 : total **entropy** $\sim VT^3$ should be conserved.

Consistency check w/ hydro freeze-out

- Freeze-out condition used in our hydro: constant energy density $e_{fo} = 0.26 \text{ GeV/fm}^3$.
- Yields are generated by hydro => Hydro FO line should be respected by the thermal-model samples.
- After considering two effects, a good match is indeed achieved.

Summary and Outlook

- Thermal model is a popular and intuitive way to extract freeze-out thermodynamics. Inspired by hydro, we incorporated both smearing effect and longitudinal flow into thermal model. Applied to C.-F. yields from a multistage hydro.
- Large rapidity: yields get contributions from mid-rapidity, by both effects => Can't use independent-rapidity-bin approach.
- Mid-rapidity: smearing effect doesn't give a significant correction in extracting freeze-out thermodynamics.
- Correlation between longitudinal system size and flow strength.
- A Bayesian analysis favours the existence of a longitudinal flow.
- **To do**: applying the model directly to experimental data (BRAHMS, BES...) => need to deal with the feed-down effect. Confirming our findings w/ hydro yields.

Backup

Uncertainty of discrete model for small yields

T uniquely given by the ratio
$$\frac{n^{\pi}}{n^{K}} = \frac{m_{\pi}^{2}}{m_{K}^{2}} \frac{\sum_{n=1}^{\infty} (-1)^{n-1} K_{2}(nm_{\pi}/T)}{\sum_{n=1}^{\infty} (-1)^{n-1} K_{2}(nm_{K}/T)}.$$

$$\delta T = \frac{dT}{dr_{\pi/K}} \delta \left(\frac{n^{\pi}}{n^{K}}\right) = \frac{dT}{dr_{\pi/K}} \frac{n^{K} \delta n^{\pi} - n^{\pi} \delta n^{K}}{(n^{K})^{2}}.$$

$$\frac{dT}{dr_{\pi/K}} \sim O(0.01 \text{ GeV})$$

Tail region $n^K \to 0 =>$ Significant δT

 $VT^3 \sim \text{const.} => \delta V/V \sim 3\delta T/T => \delta V$ expected to be even larger.

Discrete model gives thermodynamics that is too sensitive to any kinds of uncertainty in yields => the unphysical result is actually "not to be believed"

System size and the flow

- System size limited within $\eta_s < \eta_{max}$, marked with "x".
- Small η_{max} compensated by large α .
- Decreasing $V(\eta_s)$ suggested by most samples.

Longitudinal flow: parametrization

• Evident in hydro: parametrized as $\tau u^{\eta} = \alpha \eta_s^3, \eta_s < \eta_{max}$.

Longitudinal flow: $y - \eta_s$ conversion

$$ds^{2} = dt^{2} - dz^{2} = d\tau^{2} - \tau^{2}d\eta_{s}^{2}, \qquad \Longrightarrow \qquad u^{\tau} \equiv \frac{d\tau}{ds} = \sqrt{1 + (\tau u^{\eta})^{2}}.$$

$$\begin{pmatrix} dt \\ dz \end{pmatrix} = \begin{pmatrix} \cosh \eta_{s} & \tau \sinh \eta_{s} \\ \sinh \eta_{s} & \tau \cosh \eta_{s} \end{pmatrix} \begin{pmatrix} d\tau \\ d\eta_{s} \end{pmatrix} \implies v^{z} = \frac{\tanh \eta_{s}d\tau + \tau d\eta_{s}}{d\tau + \tau \tanh \eta_{s}d\eta_{s}} = \frac{\tanh \eta_{s}\sqrt{1 + (\tau u^{\eta})^{2}} + \tau u^{\eta}}{\sqrt{1 + (\tau u^{\eta})^{2}} + \tau u^{\eta} \tanh \eta_{s}}.$$

$$y = \frac{1}{2} \ln \frac{E + p^z}{E - p^z} = \frac{1}{2} \ln \frac{1 + v^z}{1 - v^z}. \implies y(\eta_s) = \frac{1}{2} \ln \frac{(\sqrt{1 + (\tau u^{\eta})^2} + \tau u^{\eta})(1 + \tanh \eta_s)}{(\sqrt{1 + (\tau u^{\eta})^2} - \tau u^{\eta})(1 - \tanh \eta_s)}.$$

Rapidity of the source

Backup slides: thermal models

$$\frac{d^3N}{d^3\vec{p}} = \frac{V}{(2\pi)^3} f(\vec{p}; T, \mu)$$

 $f(\vec{p};T,\mu)$: Fermi-Dirac/Bose-Einstein distribution; expanded as series of

Boltzmann/Maxwell dist.

Discrete model:
$$N = \int d^3\vec{p} \frac{d^3N}{d^3\vec{p}} \implies (T, \mu, V) \rightarrow (N^{\pi}, N^K, N^{p-\bar{p}})$$

Continuous model (with smearing): $(p_x, p_y, p_z) = (p_T \cos \phi, p_T \sin \phi, m_T \cosh y)$

Integrating over
$$(\phi, m_T) = > \frac{\frac{dN_i}{dy}\Big|_{y_s=0}}{1 + \frac{n^2 m_i^2}{T^2}} \sum_{n=1}^{\infty} \left(\frac{1}{n}\right)^3 \left(\frac{2}{\cosh^2 y} + \frac{n m_i}{T} \frac{2}{\cosh y} + \frac{n m_i}{T} \frac{2}{\cosh y}\right) + \frac{n^2 m_i^2}{T^2} \exp\left(-\frac{n m_i \cosh y}{T}\right), \quad (10)$$

Distribution of freeze-out cells on (T, μ_B) diagram

- Errorbars: median and 25% and 75% percentiles of freeze-out cells' (T,μ_B) distribution.
- Continuous model gets result closer to the hydro freeze-out line.
- Qualitatively similar traits by both models: as \sqrt{s} ↑

higher T, more homogenous,...

Posterior validation

Yields at chemical freeze-out

- Particle yields differ from "purely thermal yields" because of resonance decays.
- Thermal model considering both smearing and decay is hard! => Make use of multistage hydro, find $\frac{\text{final yields}}{\text{Cooper} \text{Frye yields}}$

"Freeze-out" phase diagram

- Lower temperature compensated by larger volume.
- Flat FO line for small $\mu_B =>$ Isothermal