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Transport coefficients in pre-equilibrium vs. equilibrium

Glasma – transport coefficients large:
Czajka et. al: PRC 105, 064910, PLB 834 (2022) 137464, NPA

1001 (2020) 121914, JP et. al: JHEP 09 (2020) 077 , Müller et. al:

PLB 810 (2020) 135810, Ruggieri et. al: EPJP 137 (2022) 3, 307,

PLB 798 (2019) 134933

This work: heavy quark momentum
diffusion coefficient κ during
hydrodynamization.
Use Effetive Kinetic Theory (EKT)
Arnold et. al: JHEP 01 (2003) 030

Glasma: κ≈ O (10)Gev2

fm (larger ε)
Avramescu et. al: PRD 107 (2023) 11, 114021

Lattice: κ≈ O (0.1)Gev2

fm
Banerjee et. al: PRD 85, 014510
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Main research questions of this talk

The relevant questions:
1 How large is κ during hydrodynamization?
2 How anisotropic is heavy quark diffusion?
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EKT & bottom-up thermalization PLB 502 (2001) 51-58

à la Kurkela & Zhu PRL 115 (2015) 18, 182301

Dof: gluon phase space density f

Dynamics: Boltzmann equation

∂ f (p)
∂ τ

=C1↔2[ f ] +C2↔2[ f ] +Cexp[ f ].
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Init. cond:
fh ∼ 1/αs

fh ∼ αs Thermal
equil.

τf ≈ τBMSS

τi = 1/Qs

⋆ maximum anisotropy / occupancy
fh ∼ 1/λ, λ= g2Nc.
◦ minimum occupancy
▲ Approx. isotropy PT/PL = 2.
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Heavy quark momentum diffusion coefficient κ PRC 71 (2005) 064904
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Out of equilibrium transverse κT and longitudinal κz coefficients not same:

3κ= 2κT +κz
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Other relevant observables

Effective temperature:

T∗ =
4λ
mD

∫

p

p f (p)(1+ f (p))

Debye screening mass

m2
D = 8

∫

p

λ f (p)

Temperature from energy density
Tε ∼

4p
ε
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Comparing equilibrium κ to non-equilibrium κ

Try: compare to the same T∗(t),
mD(t), and ϵ(t).
τBMSS = α

−13/5
s /Qs thermalization

timescale Baier et. al: PLB 502 (2001) 51-58.
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30% deviation

How large is κ during hydrodynamization?
For the same ϵ (Landau matching) deviation from equilibrium ∼ 30%.
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Transverse vs. longitudinal (κT vs. κz, Question 2)
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λ = 10 Initially κT/κz > 1: Overoccupied,
highly anisotropic stage → enhanced
transverse momentum exchange.
After ⋆ marker κT/κz < 1:
Results from momentum anisotropy.
In line with squeezed thermal
distributions: Romatschke: PRC 75 (2007) 014901

How anisotropic is heavy quark diffusion?
Initially transverse diffusion coefficient dominates.
At the underoccupied phase longitudinal coefficient is larger.
Difference factor of 2.
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Comparison with lattice & glasma (preliminary)
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Lattice T = 104Tc, λ ≈ 5

Lattice T = 1.5Tc

EKT, our result: κ/T3 ≈ 0.3 (at ▲, T ≈ 300MeV,λ= 10)
Lattice Leino et. al: PRD 107 (2023) 5, 054508:

κ/T 3 ≈ 1− 3 (T = 1.5Tc , strong coupling)
κ/T 3 ≈ 0.02− 0.16 (T = 104Tc , corresponds to λ≈ 5)

κT matches glasma better than κz.
Glasma results much larger for small τ Avramescu et. al: PRD 107 (2023) 11, 114021 .
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Conclusions & outlook

1 How large is κ during hydrodynamization?
Within 30 % from κeq for the same ϵ!

2 How anisotropic is heavy quark diffusion?
Initially κT > κz. At underoccupation κz > κT . Difference factor ≲ 2.

Applications for:
Phenomenological descriptions of heavy quark diffusion and quarkonium dynamics.

Related talks at QM 2023:
F. Lindenbauer: limiting attractors
(Talk, 15:10, Initial State session) &
jet quenching factor q̂ (Poster, Initial
state) with the same setup
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Evolution of mD and T∗
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Initially large f0→ enhancement
At underoccupation f dominates over
f 2→ ratio becomes 1.
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Initial enhancement due to large
occupation number.
Suppression due to underoccupation.
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Transverse and longitudinal κ matched for other quantities
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Similar to the results for the full coefficient
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Time-evolution of energy density
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Discretization effects

By far the most important parameter: UV cutoff pmin.
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Compare non-equilibrium quantities to
thermal result, with the same UV
cutoff pmin.
Left: Effect illustrated for mD

Redefine thermal T∗ and κ similarly.
Residual discretization effects cause
ratios to deviate from equilibrium
values at late times.
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κ/T 3 for λ= 5 and Tε in GeV
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κeq vs κT,z during hydrodynamization

κT,z behave qualitatively similarly to κ
(except κz at early times)
Small λ → larger deviations (small λ
→ bottom-up reproduced better).
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