Heavy quark momentum diffusion coefficient during hydrodynamization via effective kinetic theory

Jarkko Peuron(University of Jyväskylä)

In collaboration with:

K. Boguslavski (Vienna University of Technology), A. Kurkela (University of Stavanger), T. Lappi (University of Jyväskylä), F. Lindenbauer (Vienna University of Technology)

Quark Matter 2023, September 5th 2023

arXiv:2303.12520 [hep-ph]

Transport coefficients in pre-equilibrium vs. equilibrium

- Glasma transport coefficients large: Czajka et. al: PRC 105, 064910, PLB 834 (2022) 137464, NPA 1001 (2020) 121914, JP et. al: JHEP 09 (2020) 077, Müller et. al: PLB 810 (2020) 135810, Ruggieri et. al: EPJP 137 (2022) 3, 307, PLB 798 (2019) 134933
- This work: heavy quark momentum diffusion coefficient κ during hydrodynamization.
- Use Effetive Kinetic Theory (EKT)

 Arnold et. al: JHEP 01 (2003) 030

- Glasma: $\kappa \approx \mathcal{O}(10) \frac{\text{Gev}^2}{\text{fm}}$ (larger ϵ)

 Avramescu et. al: PRD 107 (2023) 11, 114021
- Lattice: $\kappa \approx \mathcal{O}(0.1) \frac{\text{Gev}^2}{\text{fm}}$

Main research questions of this talk

The relevant questions:

- 1 How large is κ during hydrodynamization?
- 2 How anisotropic is heavy quark diffusion?

EKT & bottom-up thermalization PLB 502 (2001) 51-58 à la Kurkela & Zhu PRL 115 (2015) 18, 182301

- lacktriangle Dof: gluon phase space density f
- Dynamics: Boltzmann equation

$$\frac{\partial f(\mathbf{p})}{\partial \tau} = \mathscr{C}_{1 \leftrightarrow 2}[f] + \mathscr{C}_{2 \leftrightarrow 2}[f] + \mathscr{C}_{\exp}[f].$$

- * maximum anisotropy / occupancy $f_h \sim 1/\lambda$, $\lambda = g^2 N_c$.
- minimum occupancy
- ightharpoonup Approx. isotropy $P_T/P_L=2$.

Heavy quark momentum diffusion coefficient κ PRC 71 (2005) 064904

$$3\kappa = \frac{\left\langle \Delta k^2 \right\rangle}{\Delta t} = \frac{1}{2M} \int_{kk'p'} (2\pi)^3 \, \delta^3 \left(\boldsymbol{p} + \boldsymbol{k} - \boldsymbol{p'} - \boldsymbol{k'} \right)$$
$$\times 2\pi \delta \left(k' - k \right) \boldsymbol{q}^2 \left[\left| \mathcal{M}_{\kappa} \right|^2 f(\boldsymbol{k}) (1 + f(\boldsymbol{k'})) \right].$$

Matrix element

$$|\mathcal{M}_{\kappa}|^2 = \left[N_c C_H g^4\right] \frac{16M^2 k^2 \left(1 + \cos^2 \theta_{kk'}\right)}{(q^2 + m_D^2)^2}$$

Out of equilibrium transverse κ_T and longitudinal κ_z coefficients not same:

$$3\kappa = 2\kappa_T + \kappa_z$$

Other relevant observables

Effective temperature:

$$T_* = \frac{4\lambda}{m_D} \int_{p} pf(p)(1+f(p))$$

Debye screening mass

$$m_D^2 = 8 \int_p \lambda f(p)$$

Temperature from energy density

$$T_{\epsilon} \sim \sqrt[4]{\epsilon}$$

Comparing equilibrium κ to non-equilibrium κ

- Try: compare to the same $T_*(t)$, $m_D(t)$, and $\varepsilon(t)$.
- $au_{
 m BMSS} = lpha_s^{-13/5}/Q_s$ thermalization timescale Baier et. al: PLB 502 (2001) 51-58.

How large is κ during hydrodynamization?

For the same ε (Landau matching) deviation from equilibrium $\sim 30\%$.

Transverse vs. longitudinal (κ_T vs. κ_z , Question 2)

- Initially $\kappa_T/\kappa_z > 1$: Overoccupied, highly anisotropic stage \rightarrow enhanced transverse momentum exchange.
- After \star marker $\kappa_T/\kappa_z < 1$: Results from momentum anisotropy. In line with squeezed thermal distributions: Romatschke: PRC 75 (2007) 014901

How anisotropic is heavy quark diffusion?

Initially transverse diffusion coefficient dominates.

At the underoccupied phase longitudinal coefficient is larger.

Difference factor of 2.

Comparison with lattice & glasma (preliminary)

- EKT, our result: $\kappa/T^3 \approx 0.3$ (at \blacktriangle , $T \approx 300 \text{MeV}$, $\lambda = 10$)
- Lattice Leino et. al: PRD 107 (2023) 5, 054508:
 - $\kappa/T^3 \approx 1-3$ ($T=1.5T_c$, strong coupling)
 - $\kappa/T^3 \approx 0.02 0.16$ ($T = 10^4 T_c$, corresponds to $\lambda \approx 5$)
- κ_T matches glasma better than κ_z .

 Glasma results much larger for small τ Avramescu et. al: PRD 107 (2023) 11, 114021.

Conclusions & outlook

- I How large is κ during hydrodynamization? Within 30 % from κ^{eq} for the same ε !
- 2 How anisotropic is heavy quark diffusion? Initially $\kappa_T > \kappa_z$. At underoccupation $\kappa_z > \kappa_T$. Difference factor $\lesssim 2$.

Applications for:

■ Phenomenological descriptions of heavy quark diffusion and quarkonium dynamics.

Related talks at QM 2023:

■ F. Lindenbauer: limiting attractors (Talk, 15:10, Initial State session) & jet quenching factor \hat{q} (Poster, Initial state) with the same setup

Evolution of m_D and T_st

- Initially large $f_0 \rightarrow$ enhancement
- At underoccupation f dominates over $f^2 \rightarrow$ ratio becomes 1.

- Initial enhancement due to large occupation number.
- Suppression due to underoccupation.

Transverse and longitudinal κ matched for other quantities

■ Similar to the results for the full coefficient

Time-evolution of energy density

Discretization effects

■ By far the most important parameter: UV cutoff p_{min} .

$$\begin{split} m_D^2(p_{\min}) &= \frac{8\lambda}{(2\pi)^2} \int\limits_{p_{\min}}^{\infty} \mathrm{d}p p f(p) \\ &= \frac{2\lambda T}{\pi^2} \Big(T \mathrm{Li}_2 \Big(e^{-\frac{p_{\min}}{T}} \Big) - p_{\min} \log \Big(1 - e^{-\frac{p_{\min}}{T}} \Big) \Big) \end{split}$$

- Compare non-equilibrium quantities to thermal result, with the same UV cutoff p_{min} .
- Left: Effect illustrated for m_D
- Redefine thermal T_* and κ similarly.
- Residual discretization effects cause ratios to deviate from equilibrium values at late times.

κ/T^3 for $\lambda = 5$ and T_{ϵ} in GeV

κ_{eq} vs $\kappa_{T,z}$ during hydrodynamization

- $\kappa_{T,z}$ behave qualitatively similarly to κ (except κ_z at early times)
- Small λ → larger deviations (small λ → bottom-up reproduced better).

