Unveiling the Interplay of Multi-Partonic Structures and Strongly-Interacting Media via R-dependent Jet Modifications in Heavy-Ion Collisions

Yacine Mehtar-Tani (BNL)

In collaboration with: D. Pablos and K. Tywoniuk

Quark Matter Conference, September 4-8, 2023 @ Houston

Outline

- Introduction
- Dissecting jets in HIC
- R dependence of R_{AA} : Toward precision phenomenology?
- Jet v2 and some predictions for RHIC energies

How does the perfect liquid behavior emerge from QCD as a function of distance scale?

Strongly coupled QGP Weakly coupled QGP

Increasing resolution Q^2

In addition to soft probes

• Bulk observables: flow harmonics $p_T \sim T \sim 1 \text{ GeV}$

In addition to soft probes

• Bulk observables: flow harmonics

$$p_T \sim T \sim 1 \text{ GeV}$$

Hard probes to investigate the QGP dynamics at short distances

• Quarkonia, heavy flavor suppression

$$p_T \gg 1 \text{ GeV}$$

In addition to soft probes

• Bulk observables: flow harmonics

$$p_T \sim T \sim 1 \text{ GeV}$$

Hard probes to investigate the QGP dynamics at short distances

- Quarkonia, heavy flavor suppression
- High pt hadrons, direct γ

$$p_T \gg 1 \text{ GeV}$$

In addition to soft probes

• Bulk observables: flow harmonics

$$p_T \sim T \sim 1 \text{ GeV}$$

Hard probes to investigate the QGP dynamics at short distances

- Quarkonia, heavy flavor suppression
- High pt hadrons, direct γ
- Fully reconstructed jets

$$p_T \gg 1 \text{ GeV}$$

A Rutherford-like experiment - Jets in HIC

Jet 1

Jet 2

Discovery of the atomic nucleus

Probing the microscopic properties of the QGP with jets

Multiscale dynamics

What can we learn by studying jets?

- QCD dynamics at high energy and high partons density
- Mechanisms of thermalization
- Transport properties of the QGP: \hat{q} , \hat{e} , η/s , ...
- Emergence of the nearly perfect liquid behavior

A challenging problem

- Theory:
 - Rich physics, new emergent phenomena,... e
 - lack of a comprehensive framework 😕
- Phenomenology/Experiment:
 - Versatile tools: dijet, R dependence, substructure, ... 🙂
 - Convolved processes, large soft background (semi-soft scale contamination)

Phenomenology: where do we stand?

- Thrust 1: General-purpose Monte Carlo event generator (CoLBT, Hybrid, JEWEL, MARTINI, JetMed, Q-Pythia, JETSCAPE, ...)
 - Observables are easy to compute
 - Extensive modeling of perturbative and non-perturbative physics 😕
- Thrust 2: first principle analytic approaches limited in phase space and observables 😊 better control on theoretical uncertainties? 🙂

Toward precision phenomenology?

Sensitivity to substructure via R dependence

• Open quantum system: Jets are multi-parton quantum system in contact with a thermal bath [J. Barata's talk on Tuesday]

• Color/quantum decoherence in addition to energy loss and pt

broadening

• coherence effects: resolution angle $\theta_c = (\hat{q}L^3)^{1/2}$

Casalderrey-Solana, Iancu, MT, Tywoniuk, Salgado, (2011-2013)

Resolution angle θ_c vs. centrality

FIG. 2. Distribution of the value of θ_c determined by the possible different jet in-medium histories, for three different centralities, for RHIC energies in the left panel and LHC energies in the right panel.

Nonlinear evolution evolution of energy loss

Quenching factor: Q ~ R_{AA} < 1

Two effective color charges

One effective color charge

$$\frac{\partial}{\partial ln\theta}Q_{a}(\theta,p_{T}) = \bar{\alpha}\int dz \ p_{bc}^{a}(z) \ \Theta_{res}(z,\theta) \ \left[Q_{b}(\theta,zp_{T}) \ Q_{c}(\theta,(1-z)p_{T}) - Q_{a}(\theta,p_{T}) \right] \\ \theta > \theta_{c} \qquad k_{\perp}^{2} > \sqrt{z(1-z)p_{T}\hat{q}} \qquad \qquad \text{MT, Tywoniuk (2017)}$$

Jet nuclear modification factor

- Analytic calculation includes: multiple gluon radiation, color coherence, collinear shower, collision geometry, energy recovery
- Medium coupling constant $g_{med} \sim 2.2 2.3$
- Toward precision phenomenology: uncertainties dominated by parton shower at leading log accuracy, up to $\sim 20\,\%$
- Extracted transport coefficient:

$$\hat{q}=2.46~GeV^2/fm$$
 at $Q^2=14.2~GeV^2$

MT, Pablos, Tywoniuk PRL (2021)

 \rightarrow Good agreement with ATLAS data as function of pT and centrality

Data: arXiv:1805.05635

Predictions for R dependence in ALICE

R dependence encodes color coherence effects

 \rightarrow Good agreement with 2023 ALICE data as function of pT and jet cone size

R dependence in ALICE and ATLAS

FIG. 6. Comparison of $R_{\rm AA}$ at LHC for $\sqrt{s}=5.02$ ATeV.

Data: arXiv:2303.00592

FIG. 7. Comparison of R_{AA} at LHC for $\sqrt{s} = 5.02$ ATeV.

Data: arXiv:2301.05606

 weak R dependence: interplay of energy recovery and enhanced phase space for vacuum splitting

Testing multi-parton dynamics with jet v₂

Approximation: v_2

$$v_2 \simeq rac{1}{2} rac{R_{\mathrm{AA}}(L_{\mathrm{in}}) - R_{\mathrm{AA}}(L_{\mathrm{out}})}{R_{\mathrm{AA}}(L_{\mathrm{in}}) + R_{\mathrm{AA}}(L_{\mathrm{out}})},$$

y

0.10-5%5 -- 10%40 - 60%Preliminary 20 - 40%10-20%ATLAS |y| < 1.20.08 $\sqrt{s} = 5.02 \text{ ATeV}$ R = 0.2 $|\eta| < 2.8$ 0.06Jet v_2 0.040.02-0.02150 35050 150 35050 350 250250150 25050 $\mathrm{Jet}\;p_T\;[\mathrm{GeV}]$ $\mathrm{Jet}\; p_T\; [\mathrm{GeV}]$ $\mathrm{Jet}\; p_T\; [\mathrm{GeV}]$

FIG. 8. Comparison of jet v_2 for LHC at $\sqrt{s} = 5.02$ ATeV.

Predictions for R dependence for sPHENIX

ullet Relatively weak R dependence in R_{AA} and v_2

Predictions for R dependence for sPHENIX

• R dependence of Jet $\, {
m v}_2 \, :$ sensitivity to jet substructure modification and color coherence angle $heta_{
m c}$

Conclusion

- Jets in HIC are open quantum systems probed by the medium!
 Medium resolution scale plays a crucial role in jet energy loss
- This talk: analytic approach to R_{AA} and jet v_2 as testing ground of the theory and its uncertainties
- Progress: Smooth description of the QGP dynamics from soft to hard scales. Towards precision phenomenology and extraction of transport coefficients

Thank you!