Transverse-Momentum-Dependent (TMD) Factorization of Drell-Yan Process with Cold Nuclear Matter Effects

The 30th International Conference on Ultra-relativistic Nucleus-Nucleus

Collisions, Houston, Texas, September 05, 2023

LA-UR-23-30044

Weiyao Ke, Los Alamos National Laboratory

In collaboration with Ivan Vitev Based on Ke, Vitev 2304.03302 and work in preparation.

Drell-Yan is a clean probe to study initial-state nuclear effects

Two types of nuclear effects:

- Dynamic: (1D/3D) modifications due to parton propagations in the cold nuclear matter (CNM).
- Intrinsic: (1D/3D) partonic structure of nucleon is different in a nucleus.

This works: How much can we understand TMD Drell-Yan in pA from dynamical effects?

Theory framework: TMD factorization + SCET $_{\rm G}$ (Soft Collinear Effective Theory with Glauber Gluon Ovaneceyan, Vitev JHEP06(2011)080).

1

TMD factorization of Drell-Yan in the vacuum

- When $\Lambda^2 \ll \mathbf{p}_T^2 \ll M^2$, the p_T differential DY cross-section is factorized into several sectors in the impact-parameter space $(b \longleftrightarrow p_T)$ [The TMD Handbook, Boussarie et al. arXiv:2304.03302]
- Scale & rapidity evolution equations match the boundary of sectors.

 $\frac{d\sigma}{dYdM^2p_Tdp_T} = H_{q\bar{q}}(M,\mu) \int_0^\infty bdb J_0(p_Tb) [C_{qi} \otimes f_{i/h_1}e^{-S}] [C_{\bar{q}j} \otimes f_{j/h_2}e^{-S}] (x_q, x_{\bar{q}}, \mathbf{b}, \mu, \zeta_q, \zeta_{\bar{q}})$

NLO TMD calculation of $pp \rightarrow \mu^+\mu^-$

Good agreement at low p_T . At large p_T , one should match to fixed-order result (not included).

Non-perturbative inputs: CT18nlo collinear proton PDF $f_{q/p}$ PRD103(2021)014013, EPPS21 collinear nPDF EPJC82(2022)5, 413. TMD specific NP inputs from global analysis Sun, Isaacson, Yuan, Yuan, IJMPA33(2018)11, 1841006, and Echevarria, Kang, Terry JHEP01(2021)126.

LO in the CNM: pure collisional broadening

Model the interaction with one scattering center

$$\Sigma_G(b) = g_s^2 C_F \int \frac{d^2 \mathbf{q}}{(2\pi)^2} \frac{1}{(\mathbf{q}^2 + \boldsymbol{\xi}^2)^2} \left(e^{i\mathbf{b}\cdot\mathbf{q}} - 1 \right)$$

Quark broadening from multiple scatterings

$$f_{q/p}e^{-S} \rightarrow f_{q/p}e^{-S}e^{\rho_G L \cdot \Sigma_G(b)}$$

LO in the CNM: pure collisional broadening

Model the interaction with one scattering center

$$\Sigma_G(b) = g_s^2 C_F \int \frac{d^2 \mathbf{q}}{(2\pi)^2} \frac{1}{(\mathbf{q}^2 + \boldsymbol{\xi}^2)^2} \left(e^{i \mathbf{b} \cdot \mathbf{q}} - 1 \right)$$

Quark broadening from multiple scatterings

$$f_{q/p}e^{-S} \rightarrow f_{q/p}e^{-S}e^{\rho_{G}L\cdot\Sigma_{G}(b)}$$

• CNM parameters determined from modified fragmentation functions in eA: $\rho_G \approx 0.4 \text{ fm}^{-3}$, $\xi^2 \approx 0.12 \text{ GeV}^2$ Ke, Vitev 2301.11940.

LO is inadequate.

Radiative corrections: power counting in thin/dilute medium

Consider a large separation of scales

$$\xrightarrow{\Lambda^2, \xi^2, \alpha_s \rho_G L} \ll \mathbf{k}_T, E/L \ll M^2$$

Medium-induced modes, $\lambda = \frac{1}{\sqrt{EL}} \sim \frac{\mathbf{k}_T}{E}$

- Proton-collinear: $p^{\mu} \sim E(1, \lambda^2, \lambda)$, $e^{ip^-L^+}$ slowly varies, sensitive to medium size (the LPM effect).
- Soft: $p^{\mu} \sim E(\lambda, \lambda, \lambda)$. $e^{ip^-L^+}$ highly oscillating $\to 0$.

Radiative corrections: power counting in thin/dilute medium

Consider a large separation of scales

$$\xrightarrow{\Lambda^2, \xi^2, \alpha_s \rho_G L} \ll \mathbf{k}_T, E/L \ll M^2$$

Medium-induced modes, $\lambda = \frac{1}{\sqrt{EL}} \sim \frac{\mathbf{k}_T}{E}$

- Proton-collinear: $p^{\mu} \sim E(1, \lambda^2, \lambda)$, $e^{ip^-L^+}$ slowly varies, sensitive to medium size (the LPM effect).
- Soft: $p^{\mu} \sim E(\lambda, \lambda, \lambda)$. $e^{ip^-L^+}$ highly oscillating $\to 0$.

What's not included:

- No target evolution: ρ_G, ξ^2 are constant parameters.
- Ignore power correction to hard mode $\sim \xi^2/M^2$.

Radiative corrections: medium-induced collinear sector at NLO

$$C_{qq}^{\mathrm{med}}(x,b) = \int \frac{d^{2-2\epsilon}\mathbf{q}}{(2\pi)^{2-2\epsilon}} \frac{g_s^2 \rho_G L}{(\mathbf{q}^2 + \xi^2)^2} \int \frac{d^{2-2\epsilon}\mathbf{k}}{(2\pi)^{2-2\epsilon}} g_s^2 C_F$$

$$\left\{ P_{qq}(x) \left[e^{i\mathbf{b} \cdot (\mathbf{k} - \mathbf{q})} \mathfrak{J}_{RR} + e^{i\mathbf{b} \cdot \mathbf{k}} \mathfrak{J}_{RV} \right] + \delta(1-x) \int_0^1 P_{qq} dx' \left[e^{-i\mathbf{b} \cdot \mathbf{q}} \mathfrak{J}_{VR} + \mathfrak{J}_{VV} \right] \right\}$$

$$\mathcal{J} = C_F J_F + C_A J_A \quad \text{Diagrams} \qquad J_F(x, \mathbf{k}, \mathbf{q}) \qquad J_A(x, \mathbf{k}, \mathbf{q})$$

$$RR \qquad \qquad \frac{1}{A^2} + 2 \frac{B}{B^2} \cdot \left(\frac{B}{B^2} - \frac{A}{A^2} \right) \phi_B \qquad \frac{1}{C^2} - \frac{A \cdot C}{A^2 C^2} + \frac{B}{B^2} \cdot \left(\frac{A}{A^2} - \frac{C}{C^2} \right) \phi_B$$

$$RV \qquad \qquad -\frac{1}{A^2} \qquad \qquad \frac{A}{A^2} \cdot \left(\frac{A}{A^2} - \frac{C}{C^2} \right) (\phi_A - 1)$$

$$VR \qquad \qquad -2 \frac{B}{B^2} \cdot \left(\frac{B}{B^2} - \frac{A}{A^2} \right) \phi_B - \frac{1}{A^2} \qquad \qquad -\frac{A \cdot B}{A^2 B^2} \phi_B + \frac{A \cdot D}{A^2 D^2} \phi_D$$

$$VV \qquad \qquad \frac{1}{A^2} \qquad \qquad -\frac{1}{A^2} \phi_A + \frac{A \cdot C}{A^2 C^2} \phi_C$$

$$\mathbf{A} = \mathbf{k}, \quad \mathbf{B} = \mathbf{k} - (1 - x)\mathbf{q}, \quad \mathbf{C} = \mathbf{k} - \mathbf{q}, \quad \mathbf{D} = \mathbf{k} + x\mathbf{q}, \quad \phi_V = 1 - \operatorname{sinc}\left(\mathbf{V}^2 L / [2x(1 - x)E]\right)$$

Still complicated, but we can perform power expansion in $v = \frac{\xi^2}{E/L} \ll 1$.

1. Induced collinear divergences (after power expansion)

• Divergence absorbed into the collinear PDF: $C_{qq}^{\mathrm{med}} \otimes x f_{q/p}(x, \mu^2)$.

$$C_{qq}^{\mathrm{med}}(x,b) \supset \frac{\alpha_s^2 \rho_G L^2}{8E/L} \frac{P_{qq}^{(0)}(x)}{[x(1-x)]^{1+2\epsilon}} \cdot B(\frac{L}{b^2 2E},\epsilon) \left[\frac{\mu^2 L}{\chi E}\right]^{2\epsilon} (\cdots)$$

• Lead to the in-medium evolution of parton density via a set of PDEs Ke, Vitev 2301.11940. For flavor non-singlet, it encodes parton energy loss and $q \rightarrow g$ conversion

$$\left[\frac{\partial}{\partial \tau(\mu^2)} - 4C_F C_A \frac{\partial}{\partial z} + \frac{2C_F (1 + \frac{C_F}{2C_A})}{z}\right] x f(\tau, z) = 0$$

• The natural scale determines the upper bound of evolution $\xi^2 < \mu^2 < \min(1/b^2, \chi E/L)$. Small $1/b \sim p_T$ parton suffers less energy loss!

2. Induced rapidity divergence

 Rapidity divergence cancels among collinear & soft sectors. Lead to the BFKL evolution of the broadening factor. [Fleming PLB735(2014)266; Rothstein, Stewart, JHEP08(2016)025; Vaidya 2107.00029, 2109.11568]

$$\frac{\partial V_G(\mathbf{b}, y)}{\partial y} = \frac{\alpha_s C_A}{\pi^2} \left\{ \int_{|\mathbf{b} - \mathbf{b}'| < |\mathbf{b}|} d^2 \mathbf{b}' \frac{V_G(\mathbf{b}') - V_G(\mathbf{b})}{|\mathbf{b} - \mathbf{b}'|^2} + \int_{|\mathbf{b} - \mathbf{b}'| > |\mathbf{b}|} d^2 \mathbf{b}' \frac{V_G(\mathbf{b}')}{|\mathbf{b} - \mathbf{b}'|^2} \right\}, \quad \Sigma_G(b, y) = \frac{-1}{\nabla_b^2} V_G(b, y)$$

2. Induced rapidity divergence

$$\star$$
 With initial condition $\Sigma_G(\mathbf{b},0)=g_s^2 C_F \int \frac{d^2\mathbf{q}}{(2\pi)^2} \frac{e^{i\mathbf{b}\cdot\mathbf{q}}-1}{(\mathbf{q}^2+\xi^2)^2}$

 Rapidity divergence cancels among collinear & soft sectors. Lead to the BFKL evolution of the broadening factor. [Fleming PLB735(2014)266; Rothstein, Stewart, JHEP08(2016)025; Vaidya 2107.00029, 2109.11568]

$$\frac{\partial V_G(\mathbf{b}, y)}{\partial y} = \frac{\alpha_s C_A}{\pi^2} \left\{ \int_{|\mathbf{b} - \mathbf{b}'| < |\mathbf{b}|} d^2 \mathbf{b}' \frac{V_G(\mathbf{b}') - V_G(\mathbf{b})}{|\mathbf{b} - \mathbf{b}'|^2} + \int_{|\mathbf{b} - \mathbf{b}'| > |\mathbf{b}|} d^2 \mathbf{b}' \frac{V_G(\mathbf{b}')}{|\mathbf{b} - \mathbf{b}'|^2} \right\}, \quad \Sigma_G(b, y) = \frac{-1}{\nabla_b^2} V_G(b, y)$$

 Σ_G evolves rapidly, but the LPM suppression limits the range of evolution to y = min{y_{LPM}, y_{PS}}

$$y_{\text{LPM}} = \ln\left(1 + \frac{r'_0(A^{1/3} - 1)}{2b}\right), \quad y_{\text{PS}} = \ln(Eb)$$

Medium-evolved TMD distribution of incoming parton

$$Q_0 = 4.0 \text{ GeV}, E_0 = 400 \text{ GeV}$$

$$C_{qq} \otimes f_{q/p} e^{-S} e^{\rho_G L \Sigma_G(b)}$$

$$\Longrightarrow (C_{qq} + C_{aq}^{\text{med,finite}}) \otimes f'_{q/p} e^{-S} e^{\rho_G L \Sigma_G(b,y)}$$

- $f'_{i/p}(x, \mu = 1/b)$ evolved with CNM correction.
- $\Sigma_G(b, y)$ BFKL evolved with LPM cut off.
- Finite correction C_{qq}^{med,finite} not included yet, important for scale uncertainty quantification.

 \triangle At large x_q : a k_T broadening.

 \triangle At small enough x_q , energy loss (increases with k_T) overcomes the broadening.

A consistent set of CNM input for DIS and DY

Same set of CNM inputs: $\rho_G = 0.4$ fm⁻³, $\xi^2 = 0.12$ GeV Uncertainty quantification is possible in the near future.

HERMES, NPB 780(2007)1-27

FNAL E866/NuSea Collab. PRL83(1999)2304-2307

E772, PRL64(1990)2479

NA10 Collab. PLB193(1987)373-375

For collider experiments

- *p*-going side: fractional energy loss is small, mostly broadening effect.
- Au-going side: broadening + large CNM energy loss (grows with k_T) $\Rightarrow R_{pA}$ flat/slight decreasing with p_T .
- Large exp uncertainty, very challenging measurement. Hope the sPHENIX experiment can update the measurement in p-Au or Au-Au.
- For LHC energy, see backup slides.

Summary

- Medium correction to TMD Drell-Yan using SCET_G.
- At NLO, opacity one, and leading power in $\xi^2 L/E$,
 - Induced collinear divergence ⇒ medium evolved collinear PDF.
 - ullet Induced rapidity divergence \Rightarrow BFKL evolution of the broadening factor.
- Using the same CNM parameters from SIDIS in eA, dynamical calculations provide a good description of the p_T differential Drell-Yan data in pA.
- Future: generalization to TMD hadron productions in eA and pA.
 Improve the baseline calculation for searching jet quenching in pA e.g. Vitev's Talk on Wednesday, Symall Systems 11:20.
 - Applied to the determination of intrinsic nuclear NP effects e.g. Alrashed, Anderle, Kang, Terry, Xing PRL129(2022)242001

In-medium evolution of collinear PDF

Medium-induced collinear divergences show up at endpoints of the emission spectra

$$\Delta F_{\rm NS}^{\rm med}(z) = \int_{z}^{1} \frac{dx}{x} F_{\rm NS}(\frac{z}{x}) P_{qq}^{\rm med(1)}(x) + \text{virtual term.}$$

$$P_{qq}^{\rm med(1)}(x) = \frac{\alpha_s^2 B(\frac{Q^2 L}{2E}) \rho_G L^2}{8E/L} \frac{P_{qq}^{\rm vac(0)}(x)}{[x(1-x)]^{1+2\epsilon}} \cdot \left[\frac{\mu^2 L}{\chi z \nu}\right]^{2\epsilon} \cdot C_n \Delta_n(x) (1 + \mathcal{O}(v))$$

• They can be regulated using dimension regularization ($d=4-2\epsilon$),

$$\Delta F_{\rm NS}(z) = \frac{\alpha_s^2 B(\frac{Q^2 L}{2E}) \rho_G L^2}{8E/L} \left(\frac{1}{2\epsilon} + \ln \frac{\mu^2 L}{\chi z \nu} \right) 2C_F \left[2C_A \left(-\frac{d}{dz} + \frac{1}{z} \right) + \frac{C_F}{z} \right] F_{\rm NS}(z) + \cdots$$

• For collinear observable μ^2 will be evolved to E/L. For TMD observables, it becomes $\min\{E/L,1/b^2\}$

Compare to ATLAS Drell-Yan data in pPb

- Currently, we only included $q\bar{q} \to \gamma^* \to \ell^+\ell^-$ channel.
- A factor of 2 discrepancies with the ATLAS data.
- To improve:
 - Include $C_{qg} \otimes f_{g/p}$ contributions.
 - ullet γ^*/Z exchange for high mass Drell-Yan.