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Drell-Yan is a clean probe to study initial-state nuclear effects
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ℓ+E = xqEp

xq̄EN

M2 = (pℓ− + pℓ+)
2

Two types of nuclear effects:

• Dynamic: (1D/3D) modifications due to parton

propagations in the cold nuclear matter (CNM).

• Intrinsic: (1D/3D) partonic structure of nucleon is

different in a nucleus.

This works: How much can we understand TMD Drell-Yan in pA from dynamical effects?

Theory framework: TMD factorization + SCETG (Soft Collinear Effective Theory with

Glauber Gluon Ovaneceyan, Vitev JHEP06(2011)080).

1



TMD factorization of Drell-Yan in the vacuum

• When Λ2 ≪ p2T ≪ M2, the pT differential DY cross-section is factorized into several sectors

in the impact-parameter space (b ←→ pT ) [The TMD Handbook, Boussarie et al. arXiv:2304.03302]

• Scale & rapidity evolution equations match the boundary of sectors.
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NLO TMD calculation of pp → µ+µ−

Good agreement at low pT . At large pT , one should match to fixed-order result (not included).

PHENIX PRD99(2019)072003

Non-perturbative inputs: CT18nlo collinear proton PDF fq/p PRD103(2021)014013, EPPS21

collinear nPDF EPJC82(2022)5, 413. TMD specific NP inputs from global analysis Sun, Isaacson,

Yuan, Yuan, IJMPA33(2018)11, 1841006, and Echevarria, Kang, Terry JHEP01(2021)126.
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LO in the CNM: pure collisional broadening

L

p N
E = xqEp

xq̄EN

• Model the interaction with one scattering center

ΣG (b) = g2
s CF

∫
d2q

(2π)2
1

(q2 + ξ2)2
(
e ib·q − 1

)
Quark broadening from multiple scatterings

fq/pe
−S → fq/pe

−SeρGL·ΣG (b)

• CNM parameters determined from modified

fragmentation functions in eA: ρG ≈ 0.4 fm−3,

ξ2 ≈ 0.12 GeV2 Ke, Vitev 2301.11940.
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LO in the CNM: pure collisional broadening

LO is inadequate.

• Model the interaction with one scattering center

ΣG (b) = g2
s CF

∫
d2q

(2π)2
1

(q2 + ξ2)2
(
e ib·q − 1

)
Quark broadening from multiple scatterings

fq/pe
−S → fq/pe

−SeρGL·ΣG (b)

• CNM parameters determined from modified

fragmentation functions in eA: ρG ≈ 0.4 fm−3,

ξ2 ≈ 0.12 GeV2 Ke, Vitev 2301.11940.
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Radiative corrections: power counting in thin/dilute medium

Consider a large separation of scales

M2Λ2, ξ2, αsρGL kT ,E/L≪ ≪

Medium-induced modes, λ = 1√
EL
∼ kT

E

• Proton-collinear: pµ ∼ E (1, λ2, λ), e ip
−L+

slowly

varies, sensitive to medium size (the LPM effect).

• Soft: pµ ∼ E (λ, λ, λ). e ip
−L+

highly oscillating → 0.

L

p N

x , kT

E = xqEp xq̄EN
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Radiative corrections: power counting in thin/dilute medium

Consider a large separation of scales

M2Λ2, ξ2, αsρGL kT ,E/L≪ ≪

Medium-induced modes, λ = 1√
EL
∼ kT

E

• Proton-collinear: pµ ∼ E (1, λ2, λ), e ip
−L+

slowly

varies, sensitive to medium size (the LPM effect).

• Soft: pµ ∼ E (λ, λ, λ). e ip
−L+

highly oscillating → 0.

What’s not included:

• No target evolution: ρG , ξ
2 are constant parameters.

• Ignore power correction to hard mode ∼ ξ2/M2.
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Radiative corrections: medium-induced collinear sector at NLO

Cmed
qq (x , b) =

∫
d2−2ϵq

(2π)2−2ϵ

g2
s ρGL

(q2 + ξ2)2

∫
d2−2ϵk

(2π)2−2ϵ
g2
s CF{

Pqq(x)
[
e ib·(k−q)JRR + e ib·kJRV

]
+ δ(1− x)

∫ 1

0
Pqqdx

′
[
e−ib·qJVR + JVV

]}
J = CF JF + CAJA Diagrams JF (x , k, q) JA(x , k, q)

RR 1
A2 + 2 B

B2 ·
(

B
B2 − A

A2

)
ϕB

1
C2 − A·C

A2C2 + B
B2 ·

(
A
A2 − C

C2

)
ϕB

RV − 1
A2

A
A2 ·

(
A
A2 − C

C2

)
(ϕA − 1)

VR −2 B
B2 ·

(
B
B2 − A

A2

)
ϕB − 1

A2 − A·B
A2B2 ϕB + A·D

A2D2 ϕD

VV 1
A2 − 1

A2 ϕA + A·C
A2C2 ϕC

A = k, B = k− (1− x)q, C = k− q, D = k+ xq, ϕV = 1− sinc
(
V2L/[2x(1− x)E ]

)
Still complicated, but we can perform power expansion in v = ξ2

E/L ≪ 1.
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1. Induced collinear divergences (after power expansion)

• Divergence absorbed into the collinear PDF: Cmed
qq ⊗ xfq/p(x , µ

2).

Cmed
qq (x , b) ⊃ α2

sρGL
2

8E/L

P
(0)
qq (x)

[x(1− x)]1+2ϵ
· B( L

b22E
, ϵ)

[
µ2L

χE

]2ϵ
(· · · )

• Lead to the in-medium evolution of parton density via a set of PDEs Ke, Vitev 2301.11940.

For flavor non-singlet, it encodes parton energy loss and q → g conversion[
∂

∂τ(µ2)
−4CFCA

∂

∂z
+
2CF (1 +

CF

2CA
)

z

]
xf (τ, z) = 0

• The natural scale determines the upper bound of evolution ξ2 < µ2 < min(1/b2, χE/L).

Small 1/b ∼ pT parton suffers less energy loss!
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2. Induced rapidity divergence

(A)

Projectile

Target

q1

−q2 −k

a, µ

b, ν

c, ρ

(B)

q2

q1 − q2

b, µ

b, ν

c, ρ

(C) (D)

(E)

1

+ VR + RV + VV

• Rapidity divergence cancels among collinear & soft
sectors. Lead to the BFKL evolution of the
broadening factor. [Fleming PLB735(2014)266; Rothstein,

Stewart, JHEP08(2016)025; Vaidya 2107.00029, 2109.11568]

∂VG (b, y)

∂y
=

αsCA

π2

{∫
|b−b′|<|b|

d2b′
VG (b

′)− VG (b)

|b− b′|2

+

∫
|b−b′|>|b|

d2b′
VG (b

′)

|b− b′|2

}
, ΣG (b, y) =

−1

∇2
b

VG (b, y)

• ΣG evolves rapidly, but the LPM suppression limits

the range of evolution to y = min{yLPM, yPS}

yLPM = ln

(
1 +

r ′0(A
1/3 − 1)

2b

)
, yPS = ln(Eb)
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2. Induced rapidity divergence

⋆ With initial condition

ΣG (b, 0) = g2
s CF

∫
d2q
(2π)2

e ib·q−1
(q2+ξ2)2

• Rapidity divergence cancels among collinear & soft
sectors. Lead to the BFKL evolution of the
broadening factor. [Fleming PLB735(2014)266; Rothstein,

Stewart, JHEP08(2016)025; Vaidya 2107.00029, 2109.11568]
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)
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Medium-evolved TMD distribution of incoming parton

Cqq ⊗ fq/pe
−SeρGLΣG (b)

=⇒
(
Cqq + Cmed,finite

qq

)
⊗ f ′q/pe

−SeρGLΣG (b,y)

• f ′i/p(x , µ = 1/b) evolved with CNM correction.

• ΣG (b, y) BFKL evolved with LPM cut off.

• Finite correction Cmed,finite
qq not included yet,

important for scale uncertainty quantification.

△ At large xq: a kT broadening.

△ At small enough xq, energy loss (increases with kT ) overcomes the broadening.
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A consistent set of CNM input for DIS and DY

Nuclear effects in SIDIS Nuclear effects in Drell-Yan pT spectra

Same set of CNM inputs: ρG = 0.4 fm−3, ξ2 = 0.12 GeV

Uncertainty quantification is possible in the near future.

HERMES, NPB 780(2007)1-27

FNAL E866/NuSea Collab. PRL83(1999)2304-2307

E772, PRL64(1990)2479

NA10 Collab. PLB193(1987)373-375
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For collider experiments

PHENIX pp: PRD99(2019)072003.

PHENIX prelim pAu: Leung PoS(HP2018)160.

• p-going side: fractional energy loss is small,

mostly broadening effect.

• Au-going side: broadening + large CNM energy

loss (grows with kT ) ⇒ RpA flat/slight

decreasing with pT .

• Large exp uncertainty, very challenging

measurement. Hope the sPHENIX experiment

can update the measurement in p-Au or Au-Au.

• For LHC energy, see backup slides.
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Summary

• Medium correction to TMD Drell-Yan using SCETG.

• At NLO, opacity one, and leading power in ξ2L/E ,

• Induced collinear divergence ⇒ medium evolved collinear PDF.

• Induced rapidity divergence ⇒ BFKL evolution of the broadening factor.

• Using the same CNM parameters from SIDIS in eA, dynamical calculations provide a good

description of the pT differential Drell-Yan data in pA.

• Future: generalization to TMD hadron productions in eA and pA.

Improve the baseline calculation for searching jet quenching in pA e.g. Vitev’s Talk on

Wednesday, Symall Systems 11:20.

Applied to the determination of intrinsic nuclear NP effects e.g. Alrashed, Anderle, Kang, Terry,

Xing PRL129(2022)242001
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Questions?
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In-medium evolution of collinear PDF

• Medium-induced collinear divergences show up at endpoints of the emission spectra

∆Fmed
NS (z) =

∫ 1

z

dx

x
FNS(

z

x
)Pmed(1)

qq (x) + virtual term.

Pmed(1)
qq (x) =

α2
sB(

Q2L
2E )ρGL

2

8E/L

P
vac(0)
qq (x)

[x(1− x)]1+2ϵ
·
[
µ2L

χzν

]2ϵ
· Cn∆n(x)(1 +O(v))

• They can be regulated using dimension regularization (d = 4− 2ϵ),

∆FNS(z) =
α2
sB(

Q2L
2E )ρGL

2

8E/L

(
1

2ϵ
+ ln

µ2L

χzν

)
2CF

[
2CA

(
− d

dz
+

1

z

)
+

CF

z

]
FNS(z) + · · ·

• For collinear observable µ2 will be evolved to E/L.

For TMD observables, it becomes min{E/L, 1/b2}
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Compare to ATLAS Drell-Yan data in pPb

ATLAS pPb: JHEP05(2021)182.

• Currently, we only included

qq̄ → γ∗ → ℓ+ℓ− channel.

• A factor of 2 discrepancies with the

ATLAS data.

• To improve:

• Include Cqg ⊗ fg/p contributions.

• γ∗/Z exchange for high mass Drell-Yan.
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