Exploring the strangeness enhancement and collective-like effects in small collision systems with ALICE at LHC

Meenakshi Sharma* and Anju Bhasin*

(for the ALICE Collaboration)

*University of Jammu, India E-mail: *meenakshi.sharma@cern.ch

1. Motivation

- **Production of strange hadrons: Key** tool for understanding hadronization in different collision systems
- **Strangeness enhancement:** Originally proposed as a signature of quark gluon plasma (QGP) in nuclear collisions [1]

Several similarities observed recently between heavy ion and high multiplicity pp and p-Pb collisions

Hadrochemistry in p–Pb collisions

- Benchmark for heavy ion physics. p-Pb collisions are a valuable tool to study initial-state effects, which are present as a consequence of the
- nucleons being bound into nuclei Intermediate collision system which can help to disentangle the physics processes going on in heavy ion and pp collisions

2.Detector setup

- **ITS:** Triggering, Vertexing, Tracking, PID (dE/dx)
- **TPC:** Vertexing, Tracking, PID (dE/dx)
- VOA (Scintillator): Triggering,
- Background Rejection, Multiplicity estimation.
- **ZDC:** Forward energy percentile classes
 - More details in [2]

Figure: Distribution of the sum of amplitudes in V0A (Pb-going side) and the NBD-Glauber fit in red. Centrality percentile classes are indicated by vertical lines.

5. Results on strangeness studies with ALICE

$\begin{array}{c} \begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \end{array}$ **ALICE** Preliminary, p-Pb, $\sqrt{s_{NN}}$ = 8.16 TeV, 0-5 % p-Pb, $\sqrt{s_{NN}}$ = 5.02 TeV, Phys.Lett.B 728 (2014) 25-38, 0-5% Preliminary, p-Pb, $\sqrt{s_{\text{NIN}}}$ = 8.16 TeV,60-80 % p-Pb, $\sqrt{s_{NN}}$ = 5.02 TeV, Phys.Lett.B 728 (2014) 25-38, 60-80% $p_{\tau} (\text{GeV}/c)^{\prime\prime}$

Figure (a): Λ / K_S^0 ratio as a function of $p_{\rm T}$ shows a peak at around 2-4 GeV/c

(Baryon enhancement)

--> interplay of radial flow and parton recombination at intermediate $p_{\rm T}$

Figure (b): p_T integrated Λ/K_S^0 ratio shows no significant evolution as a function of multiplicity

--> Strangeness enhancement is not driven by mass nor it is a baryon/meson effect Figure (c): Mass ordering of R_{pPb} at intermediate p_T qualitatively similar to that in

Pb-Pb collision --> Mass ordering or Baryon meson splitting?

Figure (d): Ξ / K_s^0 yield ratio as a function of charged-particle multiplicity produced at midrapidity, choosing the leading particle having the highest $p_{\rm T}$

--> transverse to leading (soft) processes are the dominant contribution to strange particle production Figure (e): Ξ * yield normalised to the charged particle multiplicity fixing the multiplicity at midrapidity or forward energy using ZDC

--> strangeness enhancement in pp collisions is observed at fixed final state multiplicity at midrapidity and shows a strong correlation with the effective energy, which reflects the initial state of the collision.

3.Identification of (multi-)strange hadrons

V0→ neutral particle decaying weakly into a pair of charged particles

(V-shaped) Cascade → charged particle decaying weakly into a V0 + charged particle

(Multi-)strange baryons in ALICE are reconstructed via their (V^0 or cascade) decay topology, through the following

- charged tracks are reconstructed in the Inner Tracking System (ITS) and Time Projection Chamber (TPC);
- specific ionization energy loss (in the TPC) is used to identify daughter particles;
- at the reconstruction level, cascade candidates are found by combining reconstructed tracks and applying loose selections on geometry and kinematics; selection cuts are finally tightened to reduce background at the analysis level

4.p_T spectra and Integrated Yield Ratio

- The $p_{\rm T}$ spectra become harder as the multiplicity increases
- Possible interpretation: particle emission from a collectively expanding system
- $p_{\rm T}$ integrated yield ratio to pions shows enhancement [3] from low multiplicity pp to central Pb–Pb collisions
- Smooth evolution between pp, p–Pb and Pb–Pb collisions
- Yield ratios show a saturation in central Pb-Pb collisions

6.Summary and conclusions

- O Ratios of neutral strange hadrons to pions increase with multiplicity and then saturate (strangeness enhancement). The ratios are found to be independent of the collision system and center-of-mass energy
- \circ Λ / K_S^0 : Baryon enhancement at intermediate p_T
- \circ $p_{\rm T}$ integrated $\Lambda / K_{\rm S}^0$ as a function of multiplicity shows no significant evolution
- \circ R_{pPb}: peak at intermediate p_T visible for Λ .
- O Strangeness production in the transverse to leading (soft) processes dominates at high multiplicity
- O Effective energy [4] can be used to study how strangeness enhancement is affected by initial state conditions

7. References:

- [1] J. Rafelski and B. Müller, PRL48, 1066 (1982)
- [2] The ALICE Collaboration, JINST 3 S08002 (2008) [3] ALICE Collaboration, Nature Physics 13, 535–539 (2017)

[4] A.Akindinov et. al., Eur. Phys. J. C 50, 341-352 (2007)