

Directed Flow of Λ , $^3_{\Lambda} H$ and $^4_{\Lambda} H$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 3.2, 3.5, and 3.9 GeV at RHIC

Junyi Han(jyhan@mails.ccnu.edu.cn), for the STAR Collaboration Central China Normal University

Abstract

Studying hyper-nuclei production and their collectivity can shed light on their production mechanism as well as the hyperon-nucleon interactions under finite density and pressure. This is a unique opportunity for heavy-ion collisions at high baryon density region where the hyper-nuclei production rate increases.

In this poster, we will present v_1 of the hyper-nuclei(Λ , 3_A H, 4_A H) from mid-central Au+Au collisions at $\sqrt{s_{NN}} = 3.2$, 3.5, and 3.9 GeV, collected by the STAR experiment with the fixed-target mode during the second phase of the RHIC beam energy scan program. The rapidity dependence of the hyper-nuclei directed flow(v_1) is studied in midcentral collisions. The extracted v_1 slopes of the hyper-nuclei are positive and decrease gradually as the collision energy increases. The results will be compared with models using the framework of hadronic transport and a coalescence after-burner.

Motivation Temperature T (MeV)

 Hyper-Nuclei are abundantly produced at high baryon density region.

The study of Hyper-Nuclei provides the opportunity to study the hyperon-nucleon(Y-N) interaction at high baryon density and temperature.

X.Luo, S. Shi, N. Xu, and Y. Zhang, Particles 3(2), 278-307 (2020) A.Andronic et al. Phys.Lett.B 697, 203 (2011)

The STAR Detector

- The data is projected onto the x-axis and y-axis separately, and then fit using a multiple
- The extracted mean(μ) and width(σ) of these Gaussians are used to select intervals for the identification of protons, deuterons, He3 and He4.

Λ , $^3_{\Lambda}$ H and $^4_{\Lambda}$ H v₁ Results

- Directed flow of Λ and hyper-nuclei show rapidity dependence in the mid-central collisions.
- At given energy, for hyper-nuclei, it seems that the slopes of mid-rapidity v₁ are scaled with atomic mass number A or/and particle mass.

Event Plane Reconstruction

Recentering and shift corrections were done.

Λ , $^3_{\Lambda}$ H and $^4_{\Lambda}$ H Reconstruction

- KF Particle finder is used to reconstruct Λ , ${}^3_{\Lambda} H$ and ${}^4_{\Lambda} H$ to improve signal significance.
- · Combinatorial backgrounds are reconstructed using a rotation technique, where a daughter track in a single event is rotated by a random angle in transverse plane multiple times.
- After subtraction of combinatorial backgrounds, the resultant distribution is fitted by student_t (Λ) or Gaussian ($^3_\Lambda H$ and $^4_\Lambda H$) function for the signal and a polynomial function for residual background
- Signal counts are extracted within a 3σ mass window width by a bin counting method.

Λ , ${}_{\Lambda}^{3}$ H and ${}_{\Lambda}^{4}$ H acceptance

- The p_T-y regions in the red boxes are the regions of acceptance used in the directed flow analysis.
- Acceptance ⊗ reconstruction efficiency are corrected.

Energy Dependence of v₁ slope

- As the collision energy increases, the v₁ slopes of both Λ and hyper-nuclei decrease.
- Hadronic transport model (IAM2 mean field + Coalescence) calculations provide a good description of the v₁ slope of hyper-

Summary

- ullet Directed flow (v₁) of Λ , ${}^3_\Lambda H$ and ${}^4_\Lambda H$ is measured in Au+Au collisions at 3.2, 3.5 and 3.9 GeV using
- The mass and energy dependence of the v₁ slope of Λ, ³/_ΛH and ⁴/_ΛH was measured.

National Natural Science Foundation Funds for the Central Universities

The STAR Collaboration of China, and Fundamental Research https://drupal.star.bnl.gov/STAR/pr esentations