

Azimuthal anisotropy of charged particles with transverse momentum up to 200 GeV in Pb+Pb collisions at $\sqrt{s_{NN}}=5.02~{\rm GeV}$

Sine Residual

30-40%

Xiaoning Wang for the ATLAS Collaboration

Motivation: Energy Loss Anisotropy in QGP

The azimuthal anisotropy v_n of high- p_T $\frac{dN}{d\phi} \propto 1 + 2\sum_{n=1}^{\infty} \cos(n(\phi - \Psi_n))$ try of the Quark Gluon Plasma (QGP) and the energy loss mechanisms of jets.

- Reveal the short-distance interactions.
- $v_{n>2}$ probes event-by-event fluctuation.
- Follow up to the successful ATLAS jet v_n measurement and extend the charged particle v_n to 200 GeV!

The ATLAS Detector

ATLAS is a general purpose detector at the LHC with 2π azimuthal coverage. The inner-detector system (ID) provides high-resolution chargedparticle tracking in the pseudorapidity range $|\eta| < 2.5$. The calorimeter system covers a wide pseudorapidity range of $|\eta| < 4.9$.

The Pb+Pb dataset used in this analysis corresponds to an integrated luminosity of 1.72 nb^{-1} taken in 2018 Run II.

The Scalar-Product Method

The scalar product method correlates the flow vectors of two subevents. In this analysis, we correlated,

- $q_{n,j}$, the flow vector of charged particles (Inner Detector)
- Q_n , the flow vector of the Forward calorimeter (FCal)

Positive half of inner detector is correlated with only negative half of the FCal and vice versa, thus imposing a minumum pseudorapidity gap of 3.2 to suppress non-flow signals including resonance decay and di-jet.

$$v_n\{SP\} \equiv Re \frac{\left\langle q_{n,j}Q_n^{N|P_*} \right\rangle}{\sqrt{\left\langle Q_n^P Q_n^{N*} \right\rangle}} = \sqrt{\left\langle v_n^2 \right\rangle}$$

Uncertainties

Total — Track $0.0 < \eta < 2.5$ — FCal $4.0 < |\eta| < 4.9$ — Remove Efficiency Correction

---- Track -2.5 < η < 0.0 ---- FCal 3.2 < $|\eta|$ < 4.0 — Restrictive Track Selection

The measured v_n are sub- > 0.01 ATLAS Preject to systematic uncertain- > 0.01 ~ 0.01 Pb+Pb 1.72 nb⁻¹ ties (box) associated with flow vector measurements, tracking selection and reconstruction efficiency. At high- p_T , statistical uncertainties (bar) dominate the uncertainty.

Result: High- $p_T v_2$, v_3 and v_4

Left plot shows v_2 , v_3 and v_4 as a function of centrality. The centrality dependence is qualitatively consistent with the jet measurements. The geometry resultant v_2 increases up to mid-centrality as expected, while the fluctuation generated v_3 and v_4 show weaker centrality dependence. The right plot shows the comparison of v_2 versus p_T up to 200 GeV, which greatly expands from previous measurements^{2;3}.

In the high- p_T region, p_T -dependence of v_2 and v_3 are shown. v_2 is nonzero and decreases with p_T while v_3 is consistent with zero.

Conclusion, Take-away and Outlook

The azimuthal anisotropies v_2 , v_3 and v_4 of charged particles were measured using the scalar product method in Pb+Pb collisions at 5.02 TeV with 1.72 nb¹ of data collected with the ATLAS detector.

- The increased luminosity has enabled additional precision for charged particle v_n measurements, and expand the transverse momentum up to 200 GeV for v_2 and v_3 .
- v_2 is **positive** with a value of 1–2% at high- p_T for all except for most central events.
- v_3 and v_4 are consistent with zero at high- p_T for all centralities.

More measurements feasible with the good statistics of the ATLAS Run II data!

[1] ATLAS Collaboration. Eur. Phys. J. C, 78(2):142, 2018.

[2] ATLAS Collaboration. Phys. Rev. C, 105(6):064903, 2022.

[3] CMS Collaboration. Phys. Lett. B, 776:195-216, 2018.