

Hyperon reconstruction method with machine learning in Pb-Pb collisions at ALICE

Ryoka Tokumoto on behalf of the ALICE collaboration (Hiroshima Univ.)

Introduction

■ Baryon-Baryon (B-B) interactions in flavor SU(3)

- ✓ Further understanding of QCD
 - > Exotic hadrons
- ✓ Determination of EoS in dense nuclear matter
 - ➤ Neutron star's core

■ Current understanding

- \checkmark Two particle correlation function ($C(k^*)$)
- Measured attractive force consistent with Lattice QCD calculations, but not sufficient to conclude existence of bound states
- Need more data for further understanding
- Systematic study of source size dependence
 - Large emission source (Pb-Pb)
 - More statistics in low k*

■ Possible B-B bound systems

- $\checkmark \Lambda\Lambda$, p Ξ^- , $\Lambda\Xi^-$ & p Ω^- in Pb-Pb
 - 1 Correlation function
 - > Scattering length, effective length
 - (2) Mass reconstruction
 - Hyperons from dibaryon decays
- > Hyperon reconstruction in Pb-Pb is the key for these analyses
- → Solution: Hyperon reconstruction with machine learning

ALICE detector

- B = 0.5 T
- $|\eta| < 0.9$

V0 detector > Centrality selection and trigger

ITS (Inner Tracking System)

Vertex reconstruction

TPC (Time Projection Chamber)

- Tracking charged particle in 3D
- > PID by energy loss measurement

$\operatorname{ex}:\Lambda-\Lambda$, $\operatorname{p}-\Xi^-$, $\operatorname{p}-\Omega^-$

[1] pp, 13 TeV, p $-\Omega^{-}$

Relative momentum k* (MeV/c)

[1] ALICE collaboration, Nature 588 (2020) 232-238

Dibaryons as molecule state

Training inputs

- ✓ Signal : Injected $\Lambda(\overline{\Lambda})$ from MC
 - ~ 0.1M samples
- ✓ Background : Sideband pairs
 - ~ 0.1M samples
- ✓ BDT input parameters

 - DCA, dE/dx inTPC
 - Reconstructed Λ - CPA, PCA, Decay length
- Training results
- > Possible to separate signal and background above BDT score = 0.4.

Λ reconstruction with BDT

■ Procedure for BDT

- ✓ Software package : hipe4ml (https://doi.org/10.5281/zenodo.5070131)
 - BDT algorithm : XGBoost
- 1 Training with background and signal samples
- BG samples: Sideband pairs, True samples: A from MC
- 2 Trained BDT is applied to real data
 - Data set: Pb-Pb 5.02 TeV, 0-10% centrality

Training data

Decay length

Pointing

angle

■ Training details

A reconstruction using KFParticle package

- ✓ Secondary vertex finding by Kalman Filter for all tracks
- $\Lambda \to p\pi^-$ (B. R. = 63.9 %, $c\tau = 7.89$ cm) > Signal and background samples prepared with
- loose secondary vertex selections

Loose vertex cuts for Λ

- Cosine Pointing Angle (CPA) > 0.8
- DCA between daughter tracks (PCA) < 2.0 cm
- Decay length < 100 cm

- - Daughter tracks

BDT results for A

■ Extraction of signal candidates

- ✓ Calculation of purity and signal candidates with different BDT score thresholds
- > Comparison with ALICE standard method (V0 class)
 - ✓ Using common track selections and ...

BDT: Apply BDT score threshold

: CPA and PCA variations for V0 cut selections

• CPA: 0.99 -> 0.9999, PCA: 1.5 -> 0.1

Common Track selections

- $|\eta| < 0.8$
- 0.05 < DCA < 3 cm
- $N\sigma (dE/dx \text{ in TPC}) < 5\sigma$
- p_T cuts
 - Pion : $p_T < 1.5 \text{ GeV}/c$
 - Proton: $p_T < 3.0 \text{ GeV}/c$

- Purity reaches about 90% at BDT score threshold = 0.97. **BDT works better than V0 class**
 - More signal candidates & better purity With BDT, purity is higher than 90% while keeping the
 - same level of statistics. Data point 3 = with typical cut selections for V0 class

BDT score threshold = 0.95 looks good by a balance between purity and significance. Significance is dropping above **BDT** score = 0.95. Purity (~ 86%) is sufficient for the hyperon pair analysis. **ALICE Performance** Pb-Pb, $\sqrt{s_{NN}}$ = 5.02 TeV Centrality (0-10%) → data - signal + background ---- background $_{\scriptscriptstyle{\perp}}$ $\Lambda
ightarrow \mathsf{p}\pi^{\scriptscriptstyle{-}}$, $\overline{\Lambda}
ightarrow \overline{\mathsf{p}}\pi^{\scriptscriptstyle{+}}$ purity = 85.9% at BDT score = 0.95 150

Summary

- Improvement of hyperon purity and efficiency in Pb-Pb for further understanding of baryon-baryon interactions
- Good balance between purity and significance at BDT score threshold = 0.95

Better results with BDT with respect to standard reconstruction method

→ Reconstruction with BDT

Future plans

- Reconstruction of cascade particles (Ξ, Ω) with BDT in Pb-Pb
- ➤ Multi-strange dibaryon searches in Pb-Pb
 - H dibaryon: 1S_0 , N Ω dibaryon: 5S_2
- $\triangleright p\Omega^-$ Correlation function measurement in Pb-Pb