Measurements of long-range two-particle correlation over a wide pseudorapidity range in p-Pb collisions at 5.02 TeV

Yuko Sekiguchi for the ALICE Collaboration Center for Nuclear Study, the University of Tokyo Quark Matter 2023, Sep. 3rd-9th, Houston, the US

arXiv:2308.16590

Inner Tracking System (ITS) and Time

Introduction

- A near-side "ridge" was observed in heavy-ion collisions and later found in pp and p–Pb collisions.
- The elliptic flow (v_2) of the identified particles shows clear mass ordering in small systems. (ALICE, PLB. 726 (2013) 164-177)

>Extending these measurements over a wider range in pseudorapidity and multiplicity dependence is important to understand the underlying dynamics and emergence of collectivity in small systems.

Two-particle correlations and extraction of $v_2(\eta)$

• The associated yield to a trigger particle as a function of $\Delta\eta$ and $\Delta\varphi$ is defined as

$$\frac{1}{N_{\text{trig}}} \frac{d^2 N_{assoc}}{d\Delta \eta d\Delta \varphi} = \frac{S(\Delta \eta, \Delta \varphi)}{B(\Delta \eta, \Delta \varphi)}, \quad S(\Delta \eta, \Delta \varphi) = \frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{same}}}{d\Delta \eta d\Delta \varphi}, \quad B(\Delta \eta, \Delta \varphi) = \alpha \frac{d^2 N_{\text{mixed}}}{d\Delta \eta d\Delta \varphi}.$$

The near-side ridge structure is observed in the central 0–5% (right figure) and other centralities up to 40%, while no significant "ridge" is observed in the 60–100% event class.

 To estimate and subtract the non-flow effects due to recoil jets and resonance decays, the template fit procedure developed by the ATLAS Collaboration is employed. (ATLAS, PRL 116 (2016) 172301)

$$Y^{\text{temp}}(\Delta \varphi) = FY^{\text{peri}}(\Delta \varphi) + G\left\{1 + 2\sum_{n=2}^{3} V_{n,n} \cos(n\Delta \varphi)\right\}$$

• v_2 at a certain η is extracted by assuming factorization, $V_{2,2}(\eta_a, \eta_b) = v_2(\eta_a)v_2(\eta_b)$, using TPC-FMD1,2, TPC-FMD3, and FMD1,2-FMD3 as

$$v_2(\eta_a) = \sqrt{\frac{V_{2,2}(\eta_a, \eta_b)V_{2,2}(\eta_a, \eta_c)}{V_{2,2}(\eta_b, \eta_c)}}$$

Results and discussion

- A non-zero v_2 is observed over a wide pseudorapidity range for the first time in p-Pb collisions.
 - Significant pseudorapidity dependence for all four centrality classes.
 - v_2 in the Pb-going direction (positive η) is larger than in the p-going direction (negative η).
- In a fixed range of pseudorapidity, v_2 depends on the local multiplicity, but at fixed local multiplicity, it depends on the pseudorapidity.
- The v_2 in p-Pb collisions is comparable with the v_2 in peripheral Pb-Pb collisions (ALICE, PLB 762 (2016) 376–388), where their multiplicities at forward pseudorapidity are comparable.

- v_2 results are compared to the hydrodynamical calculations. (W. Zhao et al., PRL 129 (2022) 252302)
 - 3D Glauber as initial condition + viscous hydrodynamics based on MUSIC + UrQMD
- The hydrodynamical model describes $v_2(\eta)$ in 0–5% and 5–10%, while it somewhat overestimates it in 10–20% and 20–40% at both forward and backward rapidity.

Summary

- The significant ridge structure is observed up to $\Delta \eta \sim 8$ in 0–5% p–Pb collisions at 5.02 TeV.
- Non-zero v_2 is observed over a wide pseudorapidity range after the non-flow subtraction with the template fit approach, and v_2 depends on charged-particle pseudorapidity density.
- The v_2 measurements of central p-Pb and peripheral Pb-Pb collisions are comparable at similar multiplicity.
- The hydrodynamical model reproduces $v_2(\eta)$ well in up to 0–10%, which suggests the emergence of collective flow even at forward and backward rapidity in p-Pb collisions.

ALICE

in p-Pb at 5.02 TeV

• $|\eta|$ < 0.8

Projection Chamber (TPC)

- Charged-particle tracking
- Forward Multiplicity Detector(FMD)
 - FMD3: $-3.4 < \eta < -1.7$
 - FMD1,2: $1.7 < \eta < 5.1$
 - Segmentation in $(\Delta \eta, \Delta \varphi) = (0.05, \pi/20)$
- Charged-particle counter
- V0 Detector
 - Trigger and centrality determination
 - V0C: $-3.7 < \eta < -1.7$, V0A: $2.8 < \eta < 5.1$

Long-range correlations up to $\Delta \eta \sim 8$ and $v_2(\eta)$ at $-3.4 < \eta < 5.1$ by using FMD in p-Pb collisions.

