
• A non-zero v2 is observed over a wide pseudorapidity range for the first time in p–Pb collisions. 
• Significant pseudorapidity dependence for all four centrality classes.
• v2 in the Pb-going direction (positive η) is larger than in the p-going direction (negative η). 

• In a fixed range of pseudorapidity, v2 depends on the local multiplicity, but at fixed local multiplicity, it depends on the pseudorapidity.
• The v2 in p–Pb collisions is comparable with the v2 in peripheral Pb–Pb collisions (ALICE, PLB 762 (2016) 376–388), where their multiplicities at forward pseudorapidity are comparable. 
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Introduction ALICE
• A near-side “ridge” was observed in heavy-ion collisions and later found in pp and 

p–Pb collisions.
• The elliptic flow (v2) of the identified particles shows clear mass ordering in small 

systems. (ALICE, PLB. 726 (2013) 164-177)

• Inner Tracking System (ITS) and Time 
Projection Chamber (TPC)
• Charged-particle tracking
• |η|<0.8

• Forward Multiplicity Detector(FMD)
• FMD3︓-3.4<η<-1.7
• FMD1,2: 1.7<η<5.1
• Segmentation in (Δη,Δφ)=(0.05,π/20)
• Charged-particle counter

• V0 Detector
• Trigger and centrality determination
• V0C: -3.7<η<-1.7, V0A: 2.8<η<5.1~500 M events with MB trigger 

in p–Pb at 5.02 TeV
Long-range correlations up to Δη~8 and v2(η) at -3.4<η<5.1 
by using FMD in p–Pb collisions.

Two-particle correlations and extraction of v2(η) 
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• The associated yield to a trigger particle as a function of ∆η and ∆φ is defined as 

The near-side ridge structure is observed in the central 0–5% (right figure) and other 
centralities up to 40%, while no significant “ridge” is observed in the 60–100% event class. 

0-5%

60-100%

• To estimate and subtract the non-flow effects due to recoil jets and resonance decays, 
the template fit procedure developed by the ATLAS Collaboration is employed. (ATLAS, 
PRL 116 (2016) 172301)
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• v2 at a certain η is extracted  by assuming factorization, 𝑉!,! 𝜂" , 𝜂* = 𝑣! 𝜂" 𝑣! 𝜂* , using 
TPC–FMD1,2, TPC–FMD3, and FMD1,2–FMD3 as
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Results and discussion

• v2 results are compared to the hydrodynamical calculations. (W. Zhao et al., PRL 129 (2022) 252302) 
• 3D Glauber as initial condition + viscous hydrodynamics based on MUSIC + UrQMD

• The hydrodynamical model describes v2(η) in 0–5% and 5–10%, while it somewhat overestimates it in 10–20% and 
20–40% at both forward and backward rapidity. 

Summary
• The significant ridge structure is observed up to Δη~8 in 0–5% p–Pb collisions at 5.02 TeV. 
• Non-zero v2 is observed over a wide pseudorapidity range after the non-flow subtraction with the template fit 

approach, and v2 depends on charged-particle pseudorapidity density.
• The v2 measurements of central p–Pb and peripheral Pb–Pb collisions are comparable at similar multiplicity. 
• The hydrodynamical model reproduces v2(η) well in up to 0–10%, which suggests the emergence of collective flow 

even at forward and backward rapidity in p–Pb collisions. 
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àExtending these measurements over a wider range in pseudorapidity and multiplicity 
dependence is important to understand the underlying dynamics and emergence of 
collectivity in small systems.
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