Topological separation of dielectron signals

using machine learning in Pb-Pb collisions with ALICE
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Dielectrons are produced at all stages of the ultra-relativistic Distance-of-closest approach (DCA) in the transverse plane:
heavy-ion collision and leave the system with negligible P A i At i o Separation of prompt and

bHSD)

final-state interaction S non-prompt sources based
—> Ideal probe to study the properties of the created medium sl e /e on their distance to the
] primary vertex:
Their invariant mass (m_ ) can be utilised to differentiate o \ pca, — Decay length of charm
between early and late contributions of the collision [1]: AR oo N DCA; and beauty hadrons
> At higher masses (1.1< m_<2.7 GeV/c?): e ‘ ™ i Vertex much larger than

- Correlated semi-leptonic decays of heavy-flavor hadrons prompt non-prompt prompt sources

- Quark-gluon plasma (QGP)

DCA,
DCA; \\Vertex

Calculate DCA on pair level taking the resolution into account:

DCA.. = /[(DCA1/01)? + (DCA2/c2)?] /2 131

! ' o However, this definition neglects information on the sign, correlation and
- Modeling these effects introduces large uncertainties tions from hadronic decays [1]. The blue line assumes binary colli- longitudinal information of the DCA
o sion scaling for heavy-flavor production, while the grey line inclu- 3 . . )
= Cocktail-indepent .met‘hod needed to separat-e . des the nPDFs from EPS09 and the measured R, of c/b > e*" [2]. - New approach: Apply machine learning (ML) to include all possible
non-prompt contributions from the QGP radiation The bottom panels show the respective cocktail ratios together et a1 ceneEiens

with theory calculations for thermal contributions [4,5].

Heavy-flavor production expected to be modified L

by cold-nuclear matter and hot-medium effects Figure 1: Dielectron production in central Pb-Pb collisions at
Vs,,, =5.02 TeV as a function of m_ compared to different expecta-

Model Performance

Binary classification Multi-class classification
Direct comparison of separation capabilities Inclusion of combinatorial background (Bkg) pairs
of different approaches using the signal (S) of - Model tuned for high precision in identifying
e'*e” pairs from prompt and non-prompt J/ decays| hon-prompt pairs (high confidence threshold)
- The ML-based model exhibits a significantly - Below-threshold pairs are labeled as prompt Bkg
better performance independent of threshold

Input Monte Carlo simulation:
- Underlying event from Hijing simulation of Pb—Pb collisions
at Vs, =5.02 TeV with a full ALICE Run 2 detector response
- Up to 10J/Y per event in |n|< 1 injected depending on
the centrality (70% prompt & 30% non-prompt)
- Only J/y tracks kept after reconstruction
- Standard track and event selections applied

ALICE Simulation
Run 2, /g injected & fiitered, ML for e*e™pair classification
T Pb—Pb /sy = 5.02TeV, B =0.5T

0.4<pr.« < 10 GEV/C, |1el< 0.8, 0 < pr,ee <10 GeV/c

=

Neural network (NN):

- Architecture: Deep Residual NN (8 layers, 256 notes)

- Activation function: ReLU

- Loss: binary or categorical crossentropy with class weights K
- Regularization: L1 and L2, 10% Dropout ; o
- Optimizer: Adam (Learning rate adjustment, early stopping) [ DOt
- Training/Validation/Test split: 75%/15%/10% 3 ALICE Sifiii

rue share: s2.9%
Preciion: 74.5% Trueshare: 22.3% True share: 11%  Tue share: 23.8%

non-prompt
s

Figure 3: Confusion matrix
of the multi-class model to
visually represent the clas-
sification performance. Dia-
gonal entries show the cor-
rect predictions of each
class, while off-diagonal
entries represent misclassi-
Run 2, Jiy injected & fiered fications. The classification
Pb-Pb {4 - 502 TeV, B performance can be esti-

- b Q4<p, <10 Gevic, n,] <02 mated using the number of
Observables used as features in the model: Pt T e (7). e
Track: DCAXV, DCA, U(DCAXV): O(DCAI): rel. p, n, @, AR ER R T R A T Positives (FP), True Negati-

e N), and False Negati-

position in x, y and z, pointing angle 6 False positive rate ver (:N 'SZ e

’ ! non-prompt _ prompt _non-prompt  prompt ves (FN) by defining the pre:

Pair: pseudo proper decay length L_, opening angle w_, Figure 2: Receiver Operating Characteristic (ROC) curves for the classical DCA,, ana- g s Bkg Bkg cision=TP/(TP+FP) and the
Cs lysis and a trained NN illustrating their performance in separating prompt and non-

i : Predicted recall=TP/(TP+FN).
pointing angle 8, X,, prompt J/ decays. The diagonal dashed line represents random guessing.
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Application

Track candidate filtering: ML can be applied successfully
Before the combinatorial pairing of all electron and positrons reject all electrons and positrons to separate prompt and
associated to a non-prompt pair identified by the multi-class model non-prompt contributions
- Removes all identified non-prompt pairs (S+Bkg) as well as all pairs which share just one track

associated to these electrons and positrons Analysis of the feature

-> Significantly reduces the combinatorial background by 33.6% and increases the S/Bkg by 64.4% importance can be used to

- Random rejection of signal pairs due to misclassification of about 5.5% improve definition
X108 of classical observables
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- nonprompts
= non-promet Bkg
prompt kg

The upgraded ITS in Run 3 ! =S

with its improved vertex " can(IsHA? value) (average impac an model utput magnicude)
s . : Figure 6: Feature importance of the multi-class model illustrated

pointing resolution will the horizontal bars. The most important features are ordered

further improve the from top to bottom. The length of each bar illustrates the impact

of this observable on the final prediction for each class highligh-

topological separation [6] ted by the different colors.
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Mg, (GeV/c?) me, (GeV/c?) Next step: A more sophisticated simulation of Pb—Pb collisions

Figure 4 & 5: Simulation of the e*e” pair distribution from J/4 decays in Pb=Pb collisions at Vs,,, = 5.02 TeV as a function of m__ The solid black line shows the sum including open heavy-flavor background and injected thermal

of all pairs with opposite signs and the dashed grey line indicates the sum of all pairs with the same sign. The green color llustrates the reconstructed pairs from o . ;

G ez Gy i 0 T [ S 1 R T e (e e ey, 11 e G e R o ot S e radiation needed to fully test the potential of this approach

ting while the right plot shows the distrbution after the application of the ML-based prefilter.
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