Topological separation of dielectron signals using machine learning in Pb–Pb collisions with ALICE

Jerome Jung¹ for the ALICE Collaboration

Dielectron Production

Dielectrons are produced at all stages of the ultra-relativistic heavy-ion collision and leave the system with negligible final-state interaction

ightarrow Ideal probe to study the properties of the created medium

Their invariant mass (m_{ee}) can be utilised to differentiate between early and late contributions of the collision [1]: \rightarrow At higher masses (1.1< m_{ee} -2.7 GeV/c²):

- Correlated semi-leptonic decays of heavy-flavor hadrons
 Quark-gluon plasma (QGP)
- Quark-gluon plasma (QGP)

Heavy-flavor production expected to be modified by cold-nuclear matter and hot-medium effects - Modeling these effects introduces large uncertainties

→ Cocktail-indepent method needed to separate non-prompt contributions from the OGP radiation

Figure 1: Dielectron production in central Pb-Pb collisions at $\psi_{ni} = 50.2$ ft% as function of $m_{compared}$ to different espectations from hadronic decays [1]. The blue line assumes binary collision scaling for heavy-flavor production, while the grey line indudes the nPDFs from EFS09 and the measured \mathbf{R}_{i} of $c/b \rightarrow e^{+1}[2]$. The bottom panels show the respective cocktail ratios together with theory calculations for thermal contributions [4,5].

Classical Approach

 $DCA_{ee} = \sqrt{[(DCA_1/\sigma_1)^2 + (DCA_2/\sigma_2)^2]/2]}$ [3]

However, this definition neglects information on the sign, correlation and longitudinal information of the DCA

→ New approach: Apply machine learning (ML) to include all possible information and correlations

Setup

Input Monte Carlo simulation:

- Underlying event from Hijing simulation of Pb–Pb collisions at vs_{_{NN}} = 5.02 TeV with a full ALICE Run 2 detector response
- Up to 10 J/ ψ per event in $|\eta| < 1$ injected depending on the centrality (70% prompt & 30% non-prompt)
- Only J/ ψ tracks kept after reconstruction
- Standard track and event selections applied

Neural network (NN):

- Architecture: Deep Residual NN (8 layers, 256 notes)
 Activation function: ReLU
- Activation function: ReLU
- Loss: binary or categorical crossentropy with class weights
 Regularization: L1 and L2, 10% Dropout
- Optimizer: Adam (Learning rate adjustment, early stopping)
- Training/Validation/Test split: 75%/15%/10%

Observables used as features in the model:

- $\begin{array}{l} {\sf Track:} \; {\sf DCA}_{{\sf x}{\sf y}'} \; {\sf DCA}_{{\sf z}{\sf y}} \; \sigma({\sf DCA}_{{\sf x}{\sf y}}), \; \sigma({\sf DCA}_{{\sf z}}), \; {\sf rel.} \; {\sf p}, \; {\sf \eta}, \; {\sf \phi}, \\ {\sf position} \; {\sf in} \; {\sf x}, \; {\sf y} \; {\sf and} \; {\sf z}, \; {\sf pointing} \; {\sf angle} \; {\boldsymbol \theta} \end{array}$
- Pair: pseudo proper decay length L_{_{ee'}} opening angle $\omega_{_{ee'}}$ pointing angle $\theta_{_{ee'}}$ $\chi_{_{ee}}{^2}$

Binary classification

e⁺e⁻ pairs from prompt and non-prompt J/ψ decays

Direct comparison of separation capabilities

of different approaches using the signal (S) of

Model Performance

Multi-class classification

Inclusion of combinatorial background (Bkg) pairs - Model tuned for high precision in identifying non-prompt pairs (high confidence threshold) → Below-threshold pairs are labeled as prompt Bkg

Figure 3: Confusion matrix of the multi-class model to visually represent the classification performance. Diagonal entries show the correct predictions of each class, while off-diagonal entries represent miclassifications. The classification performance can be estimated using the number of the performance can be estimated using the number of the performance of the performance representation of the performance scients TP/TPFP1 and the recall=TP/(TP+FN).

Application

Track candidate filtering:

Before the combinatorial pairing of all electron and positrons reject all electrons and positrons

- associated to a non-prompt pair identified by the multi-class model
- → Removes all identified non-prompt pairs (S+Bkg) as well as all pairs which share just one track associated to these electrons and positrons
- \rightarrow Significantly reduces the combinatorial background by 33.6% and increases the S/Bkg by 64.4% \rightarrow Random rejection of signal pairs due to misclassification of about 5.5%

Alt-domension M_{2} denomination of the e'e' pair distribution from J/ ψ decays in Pb-Pb collisions at $V_{40} = 50.21$ Pa as a function of m_{\perp} The solid black line shows the sum of all pairs with poposite signs and the dashed grey line indicates the sum of all pairs with the same sign. The green color illustrates the reconstructed pairs from the prompt decays. The left plot shows the mass distribution without a prefilter ing while the fight plot shows the distribution after the application of the ML-based prefilter.

HGS-HIRe for FAIR

FSP ALICE

Erforschung von Universum und Materie

Conclusion

ML can be applied successfully to separate prompt and non-prompt contributions

Analysis of the feature importance can be used to improve definition of classical observables

ML can be used as a powerful prefilter in the dielectron analysis to reject non-prompt contributions and reduce the combinatorial background

The upgraded ITS in Run 3 with its improved vertex pointing resolution will further improve the topological separation [6]

ease on the second seco

Next step: A more sophisticated simulation of Pb–Pb collisions including open heavy-flavor background and injected thermal radiation needed to fully test the potential of this approach

T. Song et. al., Open charm and dileptons from relativistic heavy-ion collisions, Phys. Rev. C 97 (2018) 064 ALICE, Technical Design Report for the Upgrade of the ALICE Inner Tracking System, CERN-LHCC-2013-02

<u>eekslikelijte</u>

