Adiabatic hydrodynamization in the 'bottom-up' thermalization scenario

Bruno Scheihing-Hitschfeld ${ }^{1}$, Jasmine Brewer ${ }^{2}$ and Yi Yin ${ }^{3}$
Massachusetts Institute of Technology ${ }^{1}$, CERN ${ }^{2}$, Institute of Modern Physics, Chinese Academy of Sciences ${ }^{3}$

Typical time evolution of the gluon occupation number in a weakly-coupled Bjorken-expanding plasma at early times

Summary

- The bottom-up thermalization scenario [1] has been central to our understanding of hydrodynamization in the effective kinetic theory of QCD. - In practice, studying this process has required intensive numerical calculations, and emergent structure has been revealed by doing so. - We now have an intuitive framework [2] to understand the bottom-up thermalization scenario, which explains:

1. why this out of equilibrium gas of quarks and gluons quickly falls into an attractor solution, and
2. the deviations from the original BMSS scaling exponents on the early-time attractor of the bottom-up scenario.

Adiabatic hydrodynamization

Consider a system described by the evolution equation

$$
\partial_{\tau}|\psi\rangle=-\boldsymbol{H}(\tau)|\psi\rangle .
$$

$H(\tau)$ has instantaneous eigenstates $|n(\tau)\rangle$ with eigenvalues $E_{n}(\tau)$.
If adiabaticity $\frac{\dot{\partial}_{n}}{\partial_{n}} \ll\left|E_{n}-E_{m}\right| \forall m \neq n$ holds, then the ground state will dominate after a transient time:

$$
\begin{equation*}
|\psi\rangle=\sum_{n=0}^{\infty} a_{n}(\tau) e^{-\int^{\top} E_{n}\left(\tau^{\prime}\right) d \tau^{\prime}}|n(\tau)\rangle \approx a_{0} e^{-\int^{\top} E_{0}\left(\tau^{\prime}\right) d \tau^{\prime}}|0(\tau)\rangle, \tag{2}
\end{equation*}
$$

thus reducing the number of active degrees of freedom of the system \Longrightarrow We can understand the emergence of attractors!
For more on this see Rachel Steinhorst's talk (Initial State session, Sep 5 5:10 pm), as well as [3].

Results: Scaling exponents

The attractor of this early-time theory has a scaling form:

$$
\begin{equation*}
f\left(p_{\perp}, p_{z}, \tau\right)=e^{\int^{\top} \alpha\left(\tau^{\prime}\right) \operatorname{dn} \tau^{\prime}} f_{S}\left(e^{\int^{\top} \beta\left(\tau^{\prime}\right) \operatorname{dn} \tau^{\prime}} p_{\perp}, e^{e^{\top} \gamma\left(\tau^{\prime}\right) \operatorname{dln} \tau^{\prime}} p_{z}\right) \tag{3}
\end{equation*}
$$

This theory has the sum rule $\alpha=\gamma+2 \beta-1$. See the figure below for the dynamical evolution of γ, β.

The above figure assumes $f \gg 1$ and $\dot{\ell}_{\mathrm{Cb}}=0.4$, as explained in [2]. See [4] for an alternative approach on flow equations for early-time kinetic theory.

Early-time kinetic theory

We use the small-angle scattering approximation of the gluon collision kernel [5], neglecting number-changing processes. Furthermore, we assume that $\left\langle p_{z}^{2}\right\rangle \ll\left\langle p_{\perp}^{2}\right\rangle$ and $f \gg 1$, with which the kinetic theory simplifies to

$$
\begin{equation*}
\partial_{\tau} f-\frac{p_{z}}{\tau} \partial_{p_{z}} f=4 \pi \alpha_{S}^{2} N_{c}^{2} \ell_{\mathrm{Cb}}[f] l_{a}[f] \nabla_{\mathbf{p}}^{2} f \tag{4}
\end{equation*}
$$

where $I_{a}[f]=\int_{\mathbf{p}}(1+f) f, \ell_{\text {cb }}[f]=\ln \left(\frac{\rho_{\text {uv }}}{\rho_{\text {R }}}\right) \approx \frac{1}{2} \ln \left(\frac{\left\langle p^{2}\right\rangle}{m_{D}^{2}}\right)$.
We proceed by finding the instantaneous ground state of (4), and use it to solve for the scaling exponents of the attractor of the first stage of 'bottomup' thermalization [1]. See [2] for details.

Results: Comparison with QCD effective kinetic theory

The scaling exponents provide a qualitative description of QCD effective kinetic theory and reproduce its late-time behavior [6].

Flow equations [2] (solid) versus QCD EKT [6] (dashed)

For these initial conditions, $f\left(\tau_{I}\right)=\left(\sigma_{0} / g_{s}^{2}\right) \exp \left(-\left(p_{\perp}^{2}+\xi^{2} p_{z}^{2}\right) / Q_{s}^{2}\right)$, both theories agree that $\gamma \approx 0.29$ at $\bar{\tau}=100$. This logarithmic correction to the time dependence of the scaling exponents has been further verified more generally in [7].

References

[1] R. Baier, A. H. Mueller, D. Schiff, and D. T. Son. Phys. Lett. B, 502:51-58, 2001 [2] J. Brewer, B. Scheihing-Hitschfeld, and Y. Yin. JHEP, 05:145, 2022.
[3] K. Rajagopal, B. Scheihing-Hitschfeld, and R. Steinhorst. To appear.
[4] A. N. Mikheev, A. Mazeliauskas, and J. Berges. Phys. Rev. D, 105(11):116025, 2022
[5] A. H. Mueller. Phys. Lett. B, 475:220-224, 2000.
[6] A. Mazeliauskas and J. Berges. Phys. Rev. Lett., 122(12):122301, 2019
[7] M. P. Heller, A. Mazeliauskas, and T. Preis. arXiv:2307.07545 [hep-th].

