

# Collision event plane determination in sPHENIX at RHIC

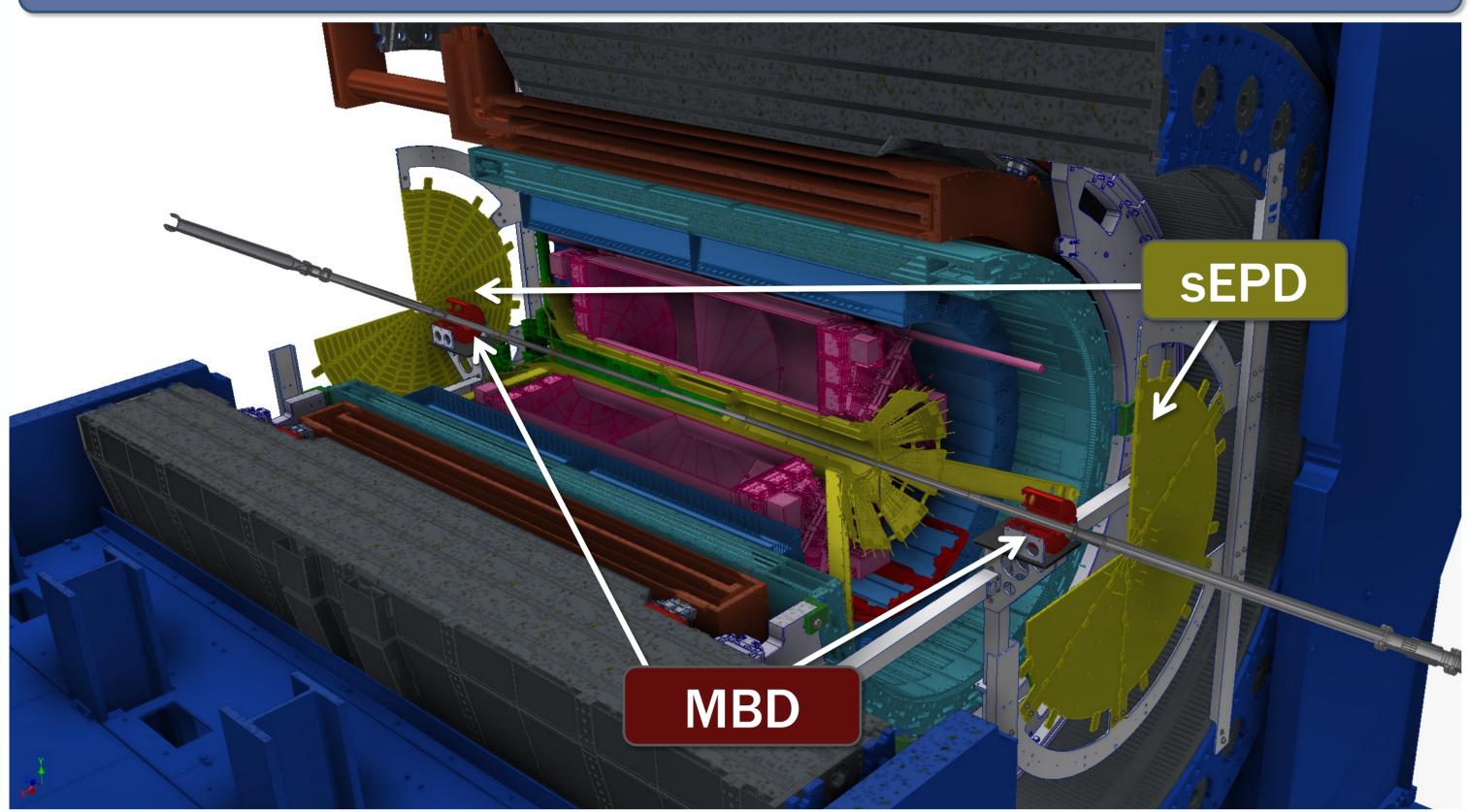


# Ejiro Umaka, Brookhaven National Laboratory, for the sPHENIX Collaboration

## Abstract

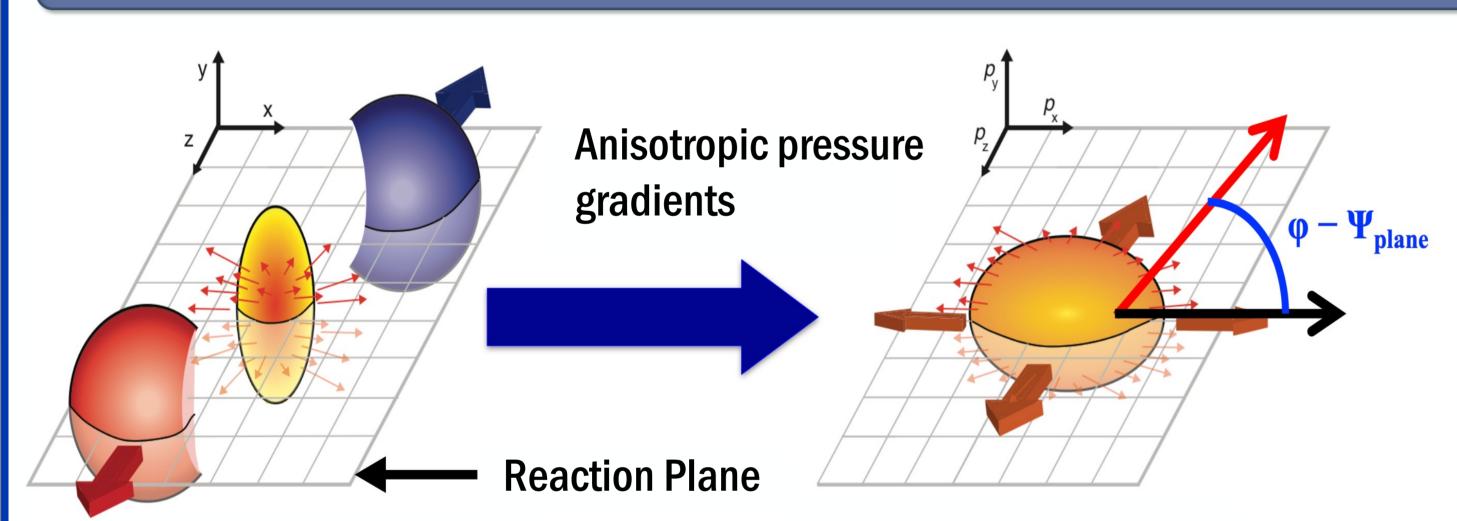
Many physics observables of interest in heavy-ion collisions require knowledge of the collision geometry. Geometric fluctuations lead to different symmetry planes of the initial geometry for each harmonic number, called participant planes. As the produced medium evolves, pressure gradients transform the initial state spatial anisotropy into final state momentum anisotropy. The angular distribution of particles can be described via Fourier coefficients  $v_n$ . The participant planes can be approximated via event planes,  $\psi_n$ , which are determined from measured azimuthal distribution of particles produced in the collision. This poster reports the methods used for event plane determination in sPHENIX as well as the performance using a variety of sPHENIX subsystems based on simulation using a realistic GEANT description of the experiment. Initial results from the first data run are also discussed.

# sPHENIX Experiment at RHIC



The subsystems used for the  $\psi_2$  determination are the Minimum Bias Detector (MBD), and the sPHENIX Event Plane Detector (sEPD), covering  $3.5 < |\eta| < 4.5$  and  $2.0 < |\eta| < 4.9$  respectively. The MBD  $\psi_2$  results are with Au+Au at 200 GeV data, while the sEPD  $\psi_2$  is with HIJING and flow after burner.

#### **Event plane determination**



Position space anisotropy

Momentum space anisotropy

The method used to estimate the reaction plane uses the anisotropic flow itself to determine the event plane [1]. The event flow vector,  $Q_n$  and the event plane angle,  $\psi_n$  are defined by the following equations:

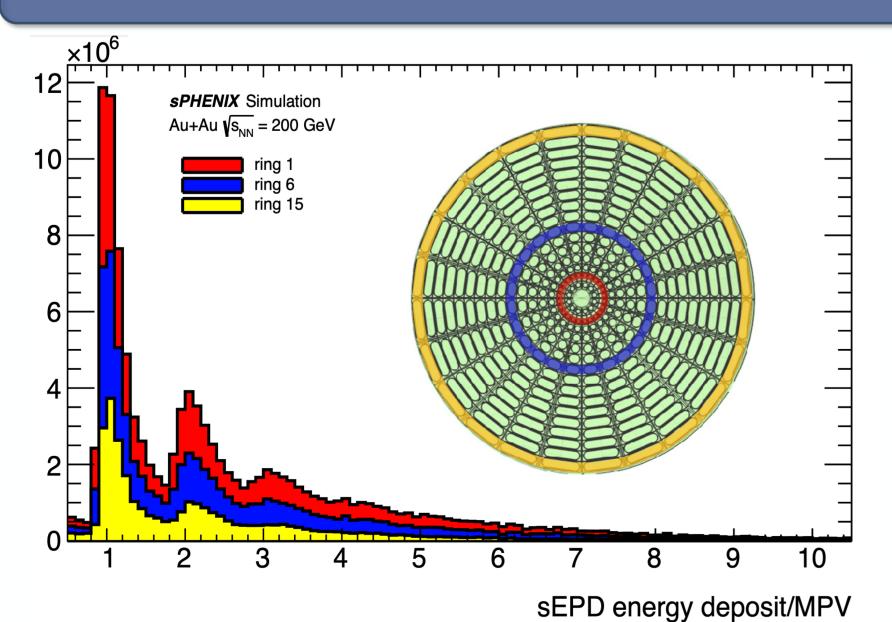
$$Q_n \sin(n\psi_n) = Y_n = \sum_i w_i \sin(n\phi_i)$$

$$Q_n \cos(n\psi_n) = X_n = \sum_i w_i \cos(n\phi_i)$$

$$n\psi_n = tan^{-1} \left( {^{Y_n}/_{X_n}} \right)$$

where,  $\phi_i$  is the azimuthal angle of *ith* particle;  $w_i$  and n are the weights and order respectively.

#### Flow vector weights optimization

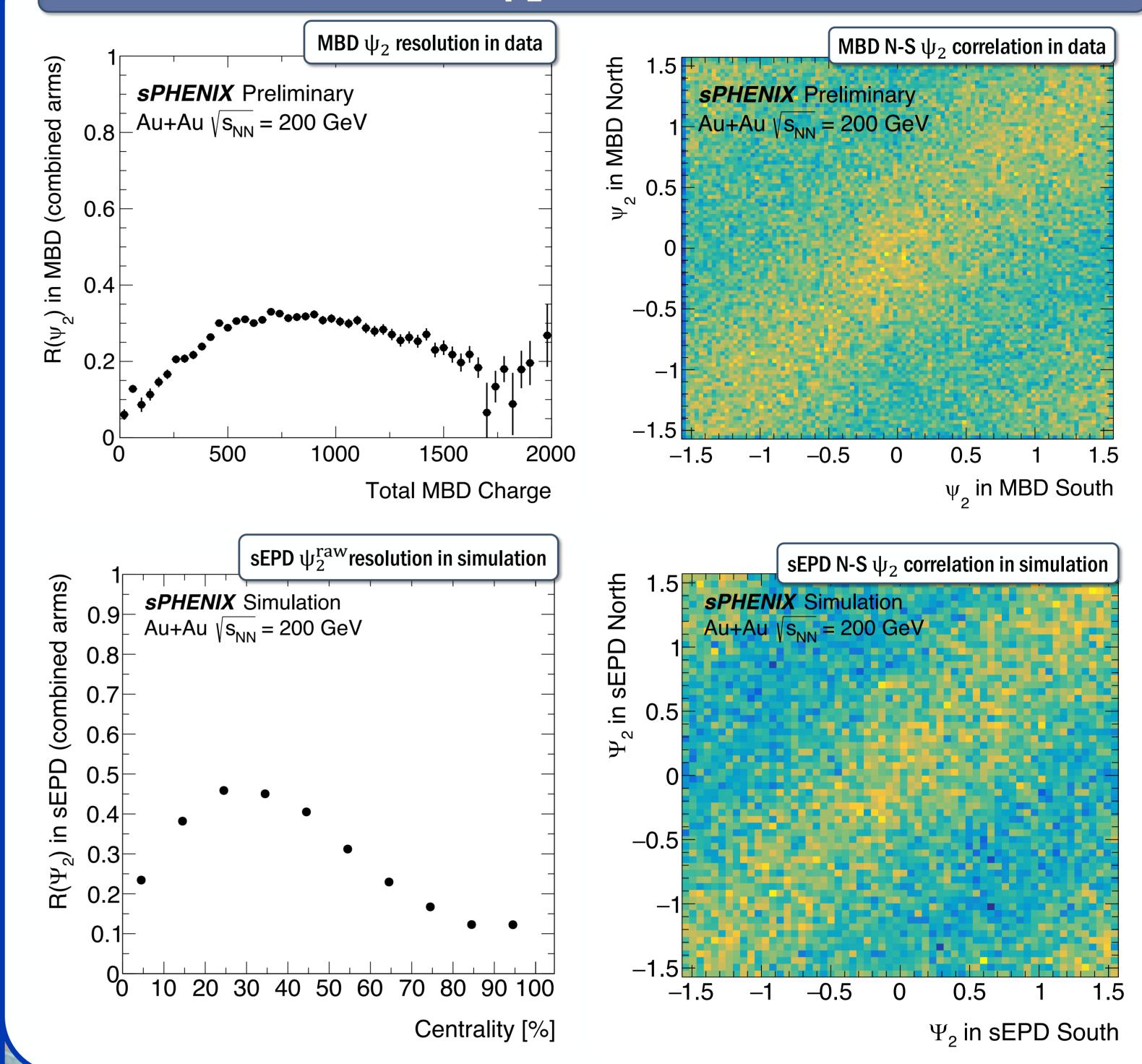


The weights used for the flow vector are the signal in each channel normalized by its MPV, also known as nMIP.

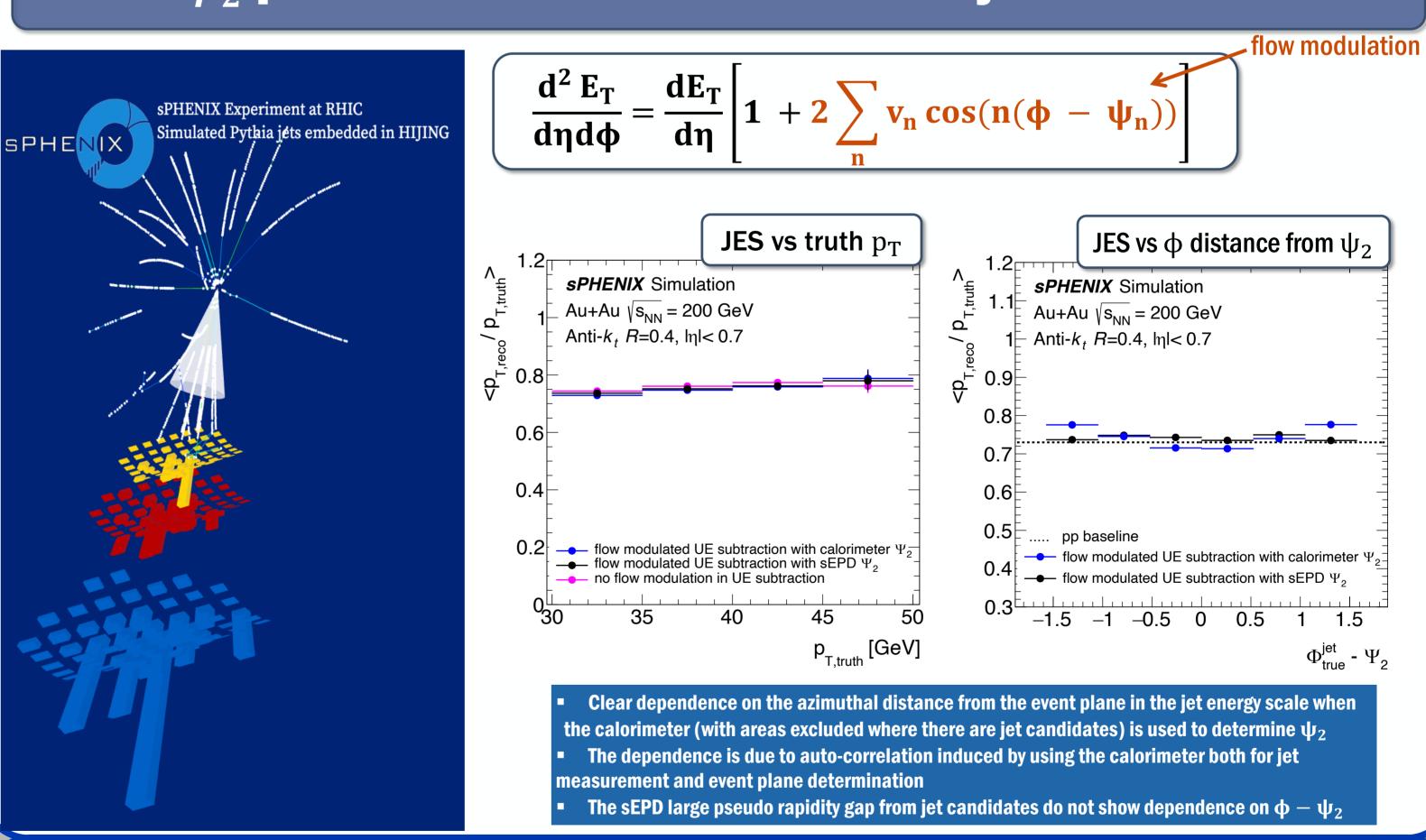
The sEPD includes a further truncation of the weights in each ring to reduce Landau fluctuations, which degrades the event plane resolution [2].

(sEPD) nMIP<sup>truncation</sup> =  $\begin{cases} nMIP & \text{if } nMIP < 6 \\ 6 & \text{otherwise} \end{cases}$ 

#### $\psi_2$ results



### sEPD $\psi_2$ performance in flow modulated jet UE subtraction



#### Summary

- The second order event plane angle ( $\psi_2$ ) was measured with the MBD using sPHENIX first data
- Results of the  $\psi_2$  using the sEPD was determined with simulated HIJING and flow afterburner events
- The sEPD  $\psi_2$  used to benchmark the flow modulated jet UE subtraction (where the default is the calorimeter
- $\psi_2$ ), show comparable results to the default in the JES vs  $p_T$ , but has no significant dependence on the event plane

#### References

[1] A. M. Poskanzer and S. A. Voloshin. Methods for analyzing anisotropic flow in relativistic nuclear collisions. PR C, 58(3):1671–1678, September 1998.
[2] Skipper Kagamaster, Rosi Reed, and Michael Lisa. Centrality determination with a forward detector in the RHIC beam energy scan. PR C, 103(4), April 2021





