

Anomalous kaon correlations in Pb-Pb collisions with ALICE at the LHC

Anjaly Sasikumar Menon⁽¹⁾ for the ALICE Collaboration

(anjaly.sasikumar.menon@cern.ch)

(1)University of Houston, United States

1. MOTIVATION: THEORY

- ALICE observed unusual behavior in the event-by-event fluctuations in the kaon sector in Pb-Pb collisions. One possible description for this is formation of Disoriented Chiral Condensate (DCC) [1].
- DCC arises from chiral symmetry restoration in the QGP, which breaks during the phase transition to form a condensate which coherently emits hadrons.

No spontaneous

symmetry breaking

Spontaneous

symmetry breaking

4. ALICE DETECTOR

5. RESULTS

K⁰_SK[±] Correlation Function

K_S⁰K[±], 10–30%

K_S⁰K[±], 10–30%

- The experimental acceptance used in this analysis is based on the geometrical acceptance of the Time Projection Chamber (TPC) at low p_T .
- Pseudorapidity: $|\eta| < 0.8$
- Transverse momentum: $0.4 < p_T < 1.0 \text{ GeV/}c$

K_S⁰K[±], 0–10%

 $K_{S}^{0}K^{\pm}$, 0–10%

1.02

ALI-SIMUL-555719

 $\mathsf{C}(\Delta\varphi,$

 $\Im(\Delta\varphi,$

0.99

0.98

12

ALI-SIMUL-555724

ALICE Simulation

ALICE Simulation

HIJING, Pb-Pb $\sqrt{s_{NN}}$ = 5.02 TeV

 ι 1.02

1.01

HIJING, Pb-Pb $\sqrt{s_{NN}}$ = 5.02 TeV

1.02

 $0.01^{\frac{1}{2}}$

0.98

 $|\eta| < 0.8$, $0.4 < p_T < 1.0 \text{ GeV/}c$

1.02

 $|\eta| < 0.8, 0.4 < p_T < 1.0 \text{ GeV/}c$

0.98

Without resonances

K_S⁰K[±], 30–60°

 $K_S^0K^{\pm}$, 30–60%

With resonances

2. MOTIVATION: EXPERIMENT

The fluctuations of relative yields of kaons were measured using the robust fluctuation correlator, $\nu_{\rm dyn}$ [2].

$$v_{dyn} = R_{cc} + R_{00} - 2R_{c0}.$$

$$R_{aa} = \frac{\langle N_a^2 \rangle - \langle N_a \rangle^2 - \langle N_a \rangle}{\langle N_a \rangle^2}$$

$$R_{c0} = \frac{\langle N_c N_0 \rangle - \langle N_c \rangle \langle N_0 \rangle}{\langle N_c \rangle \langle N_0 \rangle}$$

 $\alpha \equiv (\langle \mathbf{K}_{\mathbf{S}}^0 \rangle^{-1} + \langle \mathbf{K}^{\pm} \rangle^{-1})$

- Unlike the data, the scaled values of $v_{\rm dyn}$ predicted by the models are essentially invariant with collision centrality.
- R_{c0} shows significant dependence on centrality.

3. ANALYSIS STRATEGY

- The correlation function is defined as the ratio of signal and background distributions.
- **Signal**: Distribution of correlated pairs of particles from the same events.
- **Background**: Reference distribution constructed by the event-mixing procedure using uncorrelated particle pairs.

REFERENCES

[1] J. I. Kapusta, S. Pratt and M. Singh, Phys. Rev. C 107, no.1, 014913 (2023)[2] S. Acharya et al. (ALICE), Phys. Lett. B 832, 137242 (2022)

C=1 : No Correlation C>1 : Correlation

C<1 : Anti-correlation

(A) 1.02 (B) 1.01 (C) 1 (O) 1 (O) 1

ALI-SIMUL-555729

6. CONCLUSIONS

- The K⁰_SK[±] and K⁺K[−] correlation functions are measured using the HIJING model at the generator level.
- A significant contribution is arising from the resonance decays.
- Isolating the DCC effects requires an understanding of the structures due to other mechanisms such as minijets, fragmentation, etc.
- Outlook: Measure these correlations using the high statistics Run 2 Pb-Pb collision data.