

The anisotropic flow of K_s^0 and Λ

in Au+Au collisions at $\sqrt{S_{NN}}$ = 3.9 GeV from STAR

Xing Wu (wuxing6218@mails.ccnu.edu.cn), Central China Normal University, for the STAR Collaboration

Abstract

The directed flow (v_1) and elliptic flow (v_2) are the first two Fourier expansion coefficients of azimuthal distributions of produced particles in heavy-ion collisions. Measurements of identified particle v_1 and v_2 is one of the most informative ways in studying the properties of hot and dense nuclear matter created in heavy-ion collisions.

In this poster, directed flow and elliptic flow of identified hadrons (K_s^0 and Λ) in $\sqrt{S_{NN}}$ = 3.9 GeV Au+Au collisions, data collected by the STAR experiment in the second phase of the beam energy scan (BES-II), will be presented. We will show v_2 as a function of rapidity and p_T for these particles in 0-10% and 10-40% centrality bins. In addition, v_1 slope measured as a function of p_T window will be shown.

Motivation Relativistic Heavy-Ion Collisions

The first two Fourier expansion coefficients are directed flow and elliptic flow

A. M. Poskanzer and S. A. Voloshin. PRC 58,1671(1998)

Experimental Setup

The TPC, TOF, and EPD are main detectors used for particle identification and event plane reconstruction

Analysis Procedure

Event Plane Resolution

$$R_{1} = \sqrt{\frac{\langle cos(\Psi_{1}^{b} - \Psi_{1}^{c}) \rangle}{\langle cos(\Psi_{1}^{b} - \Psi_{1}^{c}) \rangle}}$$

$$R_{1} = \frac{\sqrt{\pi}}{2\sqrt{2}} \chi_{1} \exp(-\chi_{1}^{2}/4) \times [I_{0}(\chi_{1}^{2}/4) + I_{1}(\chi_{1}^{2}/4)]$$

$$R_{12} = \frac{\sqrt{\pi}}{2\sqrt{2}} \chi_1 \exp(-\chi_1^2/4) \times [I_{1/2}(\chi_1^2/4) + I_{3/2}(\chi_1^2/4)]$$

A. M. Poskanzer and S. A. Voloshin Phys. Rev. C58, 1671(1998)

Invariant mass method used to extract v_n

Summary and Outlook

- K_s^0 and $\Lambda v_1(y)$, v_1 slopes as a function of p_T and v_2
- Outlook: Explore the QCD phase diagram with identified particle v_1 and v_2 in BES-II

v₁ Results

- Small anti-flow for K_s^0 at low p_T (< 0.7 GeV), positive slope at higher p_T .
- Λv_1 slope is positive at all p_T .

v₂ Results

- ₹0.02 STAR preliminary 10-40% 0.1 0.2 0.3 0.4 0.5 0.6 $(m_{\perp}-m_0)/n_{\perp}(GeV/c^2)$
 - Positive v_2 for both K_s^0 and Λ at all measured p_T and rapidity at 3.9 GeV.
- K_s^0 and Λv_2 shows NCQ scaling at 3.9GeV.

Supported in part by the

The STAR Collaboration https://drupal.star.bnl.gov/STAR/presentations

