

Three-body dynamics at short range via deuteron-hadron correlations by ALICE

Otón Vázquez Doce (INFN Frascati) for the ALICE Collaboration

To the memory of Prof. Akira Ohnishi

Three-body dynamics in nuclear physics

- Fundamental ingredient for the study of the nuclear structure
- Three-body forces necessary to describe properties of nuclei and hypernuclei
 - S. C. Pieper, R. B. Wiringa, Ann. Rev. Nucl. Part. Sci. 51:53 (2001) K. Miyagawa et al., Phys. Rev. C 51, 2905 (1995)
- Relevant for dense nuclear matter and neutron stars

D. Lonardoni et al., Phys. Rev. Lett. 114, 092301 (2015)

The method: Femtoscopy in pp collisions

Measured correlation function obtained from experimental distribution of relative momentum (k^*) of particle pairs emitted in the collision

$$C(k^*) = \frac{N_{\text{same}}(k^*)}{N_{\text{mixed}}(k^*)}$$

<u>Theoretical correlation function</u> obtained from two-particle wave function and emission source

Hadron-deuteron correlation function as a two-body problem

ALICE data compared with theoretical correlation function considering deuteron as a point-like particle

- Lednický model: s-wave asymptotic wave function from scattering parameters R. Lednický, Phys. Part. Nucl. 40, 307 (2009)
- Scattering parameters available from analysis of scattering data

← Kaon-deuteron pairs

Source size $r = 1.35^{+0.04}_{-0.05}$ fm

For K⁺-d, calculation using Coulomb + strong interaction and small radius describes the data ⇒ deuterons are produced at very short distances w.r.t. to other hadrons

Proton-deuteron pairs ⇒

Source size $r = 1.08^{+0.06}_{-0.06}$ fm

For p-d, calculations with two point-like particles fail to reproduce the data.

- Pauli blocking for p–(pn) at short distances
- Asymptotic strong interaction not sufficient for small distances

p-d correlation function including three-body dynamics

First formulation of the p-d correlation function starting from p-(pn) dynamics that form the p-d state

600

with: $\Psi_{m_2, m_1 \vec{k}^*}$ three-nucleon wave function, p–(pn) to p–d state asymptotically A_d deuteron formation probability using deuteron wave function

M. Viviani, S. König, A. Kievsky, L. E. Marcucci, B. Singh, O. Vázquez Doce, arXiv:2306.02478 [nucl-th]

- **⇒** ALICE measurement of the p-d correlation function sensitive to dynamics of the three-body p-(pn) system at short distances
 - nucleon-nucleon source size in the p-d system from $m_{\rm T}$ scaling: $R_{\rm M}=1.43\pm0.16\,{\rm fm}$

<u>Full-fledged three-body calculation describes the data</u> (red curve) by including:

- AV18, two-nucleon potential
- Urbana IX, three-nucleon force
- Calculation up to d-wave

s-wave only (blue curve) and Coulomb only (green curve) calculations disagree with the data

Open possibilities for the future

Sizeable effects in ratio of p-d correlation with/without genuine three-body force:

- LHC Run 3 + ALICE upgraded apparatus will enable the study of the interaction at small distances
- Studies of three-baryon systems in the strange and charm sectors will be accessible

SCAN ME

Scan this QR code to download our publication ALICE Coll., arXiv:2308.16120 [nucl-ex] See also talk by B. Singh in Light flavour session

 k^* (MeV/c)