Photon radiation by rotating systems in magnetic field

Matteo Buzzegoli, Jonathan D. Kroth, Kirill Tuchin, and <u>Nandagopal Vijayakumar</u> Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA

Motivation

Quark-Gluon Plasma in Heavy Ion collisions possess high vorticity and subject to intense magnetic field.

• Here we study the effect of rotation on radiation emitted by a single particle in a magnetic field (synchrotron radiation.)^[2]

Formulation of the Problem

Hamiltonian for the rotating system is

$$H = H_0 + \Omega J_z$$

(rotation and magnetic field is along Z axis) H_0 is Hamiltonian without rotation of a single particle in a magnetic field.

- Eigen states are labelled by the principal quantum number n, longitudinal momentum p_z and magnetic quantum number m. There is degeneracy in m when $\Omega = 0$.
- Synchrotron radiation is emitted when there is a transition from one level to another.
- Rotation lifts the degeneracy in m by adding to the energy of each level by $m\Omega$.
- Rotating frames have a causal boundary where corotating particles approach the speed of light. The size of the boundary decreases with angular speed.
- We assume angular speed is small enough that the causal boundary is far away than the characteristic length scale of the system (magnetic length.)

Calculation

We calculate the amplitude of the process: $(in \hbar = c = M = 1 \text{ units})$

- Summing and Integrating over the final states we obtain the differential and total radiation intensity.
- The total radiation intensity is

$$W_{t} = \frac{q^{2}}{4\pi} \sum_{n',a'} \int_{0}^{\pi} \frac{d\theta}{2} \frac{\omega_{0}^{2} \sin\theta}{1 + \frac{\omega_{0} \cos^{2}\theta}{E' - m'\Omega}} \left(\Gamma_{n,a}^{(0)} + h \Gamma_{n,a}^{(1)} \right)$$

where $\Gamma_{n,a}^{(0)}$, $\Gamma_{n,a}^{(1)}$ depends on θ and energy, E. h is the helicity of the photon. ω_0 is the resonant frequency.

Results

• Spectrum of the radiation for certain initial states

Solid Line: qB > 0, $\Omega < 0$. Dashed line: qB > 0, $\Omega = 0$

• Total Radiation intensity:

Solid Lines: Effect of Ω on negative charge. Cyan curve: Quasi-classical result for $\Omega = 0$

Conclusions

- Rotation can enhance or suppress the synchrotron radiation intensity.
- For negative charges, radiation is enhanced when magnetic field and rotation are parallel and suppressed when anti-parallel and vice-versa for positive charges.
- Classically the result can be understood in terms of effective rotation: for negative charges, when \boldsymbol{B} and $\boldsymbol{\Omega}$ are aligned, Synchrotron frequency $\left(\omega_B = \frac{q_B}{E}\right)$ adds to the rigid rotation.

Effective rotation experienced by an electron when \boldsymbol{B} and $\boldsymbol{\Omega}$ are parallel and anti-parallel

- From the results, if the enhancement factor from zero rotation $\sim a(E)$, the suppression factor $\sim \frac{1}{a(E)}$.
- For a collection of rotating charges like QGP, the number of photons emitted is roughly

$$N(\Omega) = \frac{1}{2} \left(a(E)N^+(\Omega=0) + \frac{1}{a(E)}N^-(\Omega=0) \right)$$

where N^+ represents number of photons from charges with $qB\Omega < 0$ and N^- that with $qB\Omega > 0$.

• Thus for large *a* we can expect an overall enhancement of Synchrotron radiation in QGP due to rotation.

References

- [1] Buzzegoli, M., Kroth, J.D., Tuchin, K., & Vijayakumar, N. (2023). Photon radiation by relatively slowly rotating fermions in magnetic field. arXiv:2306.03863
- [2] Buzzegoli, M., Kroth, J.D., Tuchin, K., & Vijayakumar, N. (2022). Synchrotron radiation by slowly rotating fermions. Physical Review D. arXiv:2209.02597

