

Multiplicity dependent Ξ_c⁰ measurement via semileptonic decay in collisions of

pp at \sqrt{s} = 13 TeV and p-Pb at \sqrt{s}_{NN} = 5.02 TeV with ALICE

Chong Kim* and Sanghoon Lim

for the ALICE Collaboration

1. Introduction

Describing heavy-flavor production

Factorization approach:

$$\frac{d\sigma^{pp\to Hq}}{dp_T} = f_i(x_1, \mu_f^2) f_j(x_2, \mu_f^2) \times \frac{d\sigma^{ij\to q}}{dp_T} (x_1, x_2, \mu_f^2) \times D_{q\to Hq} (z_q = \frac{p_{Hq}}{p_q}, \mu_f^2)$$
Parton distribution
functions
functions
(PDFs)

Fragmentation function
(hadronization)
(via pQCD)

- Fragmentation function (FF):
 - a. Parameterized from e⁺e⁻ and e⁻p collisions
 - Assumed to be universal and independent of collision systems
 - Baryon-to-meson ratio provides sensitive info

Questioning the universality of the FF

- Meson-to-meson ratio: consistent with e⁺e⁻ and e⁻p
- Baryon-to-meson ratio:
 - a. Significant p_T dependence in Λ_c^+ , Ξ_c^0 , and Ξ_c^+
 - Significant enhancement compared to e⁺e⁻ and e⁻p
 - Further information accessible via multiplicity classification

4. Status of the analysis

Analysis procedure

- Define signal and background (BG)
 - a. Signal: $e\Xi$ pairs from $\Xi_c^0 \rightarrow e\Xi v$
 - b. Total BG = Combinatorial BG + Physical BG + 4-body BG
 - b-1. Combinatorial BG: general BG introduced during analysis
 - b-2. Physical BG: fake e≡ pairs from other physical process (e.g., jet)
 - b-3. 4-body BG: $e\Xi$ pairs from decay modes other than $\Xi_c^0 \rightarrow e\Xi v$
- Obtain templates for signal extraction
 - a. Signal: using MC
 - b. Combinatorial BG: data-driven approach via mixed event
 - Physical BG: data-driven approach via like-sign mixed event
 - d. 4-body BG: using MC
- Final signal extraction:

perform template fit to unlike-sign e≡ pair distribution

2. ALICE detector in Run 2

ALICE subsystems relevant to this analysis

- TPC (Time Projection Chamber): tracking, PID[†] via dE/dx
- ITS (Inner Tracking System): tracking and vertexing
- TOF (Time of Flight): PID via time-of-flight measurement
- V0: triggering, centrality

[†]Particle identification

$^{\circ} \rightarrow e\Xi v \ measurement$

Ongoing ALICE $\Xi_c^0 \rightarrow e\Xi$ analyses			
Collision system	pp		p–Pb
√s (TeV)	13		5.02
Trigger	НМ	MB	MB
Multiplicity (%, via V0M)	0-0.1	0.1-30 / 30-100	Inclusive
L_{int}	~32 nb ⁻¹ (MB)		~287 µb⁻¹
Observable	Ξ_c^0/D^0		$\Xi_{\rm c}^{0}/{\rm D}^{0}$, $R_{\rm pPb}$

Target channel and Analysis strategy

- Target: $\Xi_c^0 \rightarrow e^+ \Xi^- \nu_e \rightarrow e^+ (\pi^- \Lambda) \nu_e \rightarrow e^+ (\pi^- (p \pi^-)) \nu_e$ and its charge conjugate
- Analysis strategy:
 - Collect electrons and Ξ candidates
 - 2. Offline selection:
 - a. Multiplicity classification
 - b. Build e≡ pairs by using collected e and ≡ candidates
 - Signal extraction via "template fit"
 - Follow-up corrections:
 - a. Unfolding: convert $e \equiv p_T \rightarrow \Xi_c^0 p_T$, recover momentum of missing v
 - b. Acc. × eff., b-hadron contribution...
 - Get final observables: production cross section, Ξ_c^0/D^0 , and R_{pPb}

5. Outlook

$\Xi_c^0 \rightarrow e\Xi v$ analysis with ALICE

- For pp @ \sqrt{s} = 13 TeV (vs. multiplicity) and for p-Pb @ $\sqrt{s_{NN}} = 5.02 \text{ TeV}$
- The analysis procedure is well defined and under final tune
- Multiplicity-dependent analysis will provide further hint to the question on the universality of FF