

# Pseudorapidity densities of charged particles with transverse momentum thresholds in pp collisions at $\sqrt{s} = 5.02$ and 13 TeV with ALICE

30th CONFERENCE ON ULTRA-RELATIVISTIC NUCLEUS-NUCLEUS COLLISIONS: Quark Matter 2023 Jeongsu Bok (Pusan National University) for the ALICE collaboration

#### Motivation

#### Pseudorapidity density of charged particles $\mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta$

- ${\rm d}N_{\rm ch}/{\rm d}\eta$  is a key observable for understanding the general properties of particle production in high-energy hadronic collisions
- ${\rm d}N_{\rm ch}/{\rm d}\eta$  measurements provide constraints on particle production mechanisms and input for tuning of MC event generators
- ${\rm d}N_{
  m ch}/{\rm d}\eta$  serves as reference data to study nuclear effects in nucleus-nucleus and proton-nucleus collisions

#### **ALICE detector in Run 2**



Detectors used in this analysis

- ITS Inner Tracking System tracking, event selection, vertex
- TPC Time Projection Chamber tracking  $|\eta| < 0.8$
- V0
  - triggering, event selection

## $dN_{\rm ch}/d\eta$ for event classes



 $dN_{\rm ch}/d\eta$  for three event classes at  $\sqrt{s}$  = 5.02 TeV

- INEL: inelastic events
- NSD: non-single-diffractive events
- INEL>0: inelastic events with at least one charged particle in  $|\eta| < 1.0$
- Data are compared to simulations obtained with PYTHIA 6
   Perugia 2011 tune and PYTHIA 8 Monash 2013 tune
- Models better describe distributions with a smaller diffractive contribution: NSD, INEL>0

|             | $\langle \mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta angle$ |                        |                       |              |                      |              |
|-------------|--------------------------------------------------------|------------------------|-----------------------|--------------|----------------------|--------------|
| Event class | Data±syst.                                             |                        | PYTHIA 6 Perugia 2011 |              | PYTHIA 8 Monash 2013 |              |
|             | $ \eta  < 0.5$                                         | $ \eta  < 1$           | $ \eta  < 0.5$        | $ \eta  < 1$ | $ \eta  < 0.5$       | $ \eta  < 1$ |
| INEL        | $4.17^{+0.23}_{-0.19}$                                 | $4.25^{+0.23}_{-0.19}$ | 4.48                  | 4.54         | 4.58                 | 4.65         |
| NSD         | $5.18^{+0.14}_{-0.13}$                                 | $5.28^{+0.13}_{-0.12}$ | 5.09                  | 5.16         | 5.14                 | 5.23         |
| INEL>0      | $5.60^{+0.08}_{-0.08}$                                 | $5.70^{+0.08}_{-0.07}$ | 5.48                  | 5.55         | 5.44                 | 5.54         |

## $dN_{ch}/d\eta$ with $p_T$ thresholds



 ${\rm d}N_{\rm ch}/{\rm d}\eta$  for INEL>0 event class within  $|\eta|<$  0.8 with  $p_{\rm T}$  thresholds at  $\sqrt{s}$  = 5.02 and 13 TeV

- $p_T > 0.15, 0.5, 1.0, 2.0 \text{ GeV/}c$
- Compared to the distributions from models: PYTHIA 8 Monash 2013 and EPOS-LHC.
- Better description by EPOS-LHC at  $\sqrt{s}$  = 5.02 TeV while PYTHIA8 is better at  $\sqrt{s}$  = 13 TeV
- The result provide further constraints on charged particle production mechanisms implemented in models affecting both soft and hard QCD and their energy dependence

# Energy dependence of $\langle \mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta \rangle$



 $\langle {\rm d}N_{\rm ch}/{\rm d}\eta\rangle$  averaged over  $|\eta|<$  0.5 as a function of centre-of-mass energy

- The lines indicate a power-law fit for each event class
   The grey bands show one standard deviation
- $\langle dN_{\rm ch}/d\eta \rangle$  at 5.02 TeV is in good agreement with the power law fit  $(\langle dN_{\rm ch}/d\eta \rangle \propto s^{\delta})$
- $\delta = 0.102(INEL), 0.114(NSD), 0.115(INEL>0)$
- $\delta$  = 0.153(INEL) in AA collisions
  - $\rightarrow$ d $N_{\rm ch}/{\rm d}\eta$  increases faster with energy in AA collisions  $\rightarrow$ Initial longitudinal energy is more efficiently converted into particles in AA collisions

### Comparison with ATLAS, CMS



 $dN_{\rm ch}/d\eta$  for INEL>0 with  $p_{\rm T}$  > 0.5 GeV/c at  $\sqrt{s}$  = 13 TeV is compared with ATLAS, CMS results

- $|\eta|$  < 0.8 is normalized using PYTHIA8
- ALICE result is 3%(2%) larger than ATLAS(CMS), still compatible within systematic uncertainty

## **Summary and Outlook**

- ALICE has measured  ${\rm d}N_{\rm ch}/{\rm d}\eta$  for INEL, NSD, INEL>0 event classes at  $\sqrt{s}$  = 5.02 TeV. The predictions of PYTHIA 6 Perugia 2011 and PYTHIA 8 Monash 2013 tunes agree with NSD and INEL>0 results
- $dN_{\rm ch}/d\eta$  with different  $p_{\rm T}$  thresholds at  $\sqrt{s}$  = 5.02 and 13 TeV are measured
- ALICE 13 TeV result with  $p_{\rm T}$  > 0.5 GeV/c is compared with ATLAS and CMS result Result provide important constraint for the tuning of MC event generators
- Run3 analysis ongoing for Pb–Pb 5.36 TeV and pp 0.9, 13.6 TeV