$\Xi_{\rm c}^0$ production vs multiplicity via hadronic decay in pp at $\sqrt{s}=13$ TeV

ALICE

Tao Fang for ALICE Collaboration

Central China Normal University, China Email: tao.fang@cern.ch

Motivation

The heavy-flavour production cross section can be calculated as a convolution of three terms

$$\frac{d\sigma^{\rm D}}{dp_{\rm T}} \ (p_{\rm T}; u_{\rm F}; u_{\rm R}) = {\rm PDF}({\rm x_1}, {\rm u_F}) {\rm PDF}(x_2, u_{\rm F}) \otimes \frac{d\sigma^{\rm c}}{dp_{\rm T}^c} \ (x_1, x_2, u_{\rm R}, u_{\rm F}) \otimes D_{c \to {\rm D}} \ (z = p_{\rm D}/p_c \ , u_{\rm F})$$

- The measurements of the Λ_c^0/D^0 and $\Xi_c^{0,+}/D^0$ cross section ratios in pp collisions are systematically larger with respect to measurements in e^+e^- and ep collision
- The $p_{\rm T}$ -differential yield ratio of $\Lambda_{\rm c}^+/{\rm D}^0$ shows a significant multiplicity dependence.

The measurement of the multiplicity dependence of Ξ_c^0/D^0 yield ratio can provide further constraints on the study of charm hadronization.

The ALICE detector and data set (Run 2)

- 1. Inner Tracking System(ITS): trigger, tracking, vertexing
- Time Projection Chamber(TPC): tracking, PID via dE/dx
- 3. Time Of Flight(TOF): PID via timeof-flight measurement
- 4. V0: trigger, multiplicity

Data set: pp collisions at $\sqrt{s} = 13$ TeV collected by ALICE in 2016, 2017, 2018. The measured charge-particle multiplicity classes are [0-100], [30-100], [0.1-30], [0-0.1]

Analysis strategy

hipe4ML
nnel
))
kground

Reconstruction of Ξ_c^0 in the hadronic decay channel $\Xi_c^0 \to \pi^+ \Xi^- \to \pi^+ (K^- \Lambda) \to \pi^+ (K^- (p\pi^-))$

- 1. Machine learning to separate signal and background
- 2. Raw yield extraction via invariant-mass fit

 The Ξ_c^0 signal is extracted from the $\Xi^-\pi^+$ invariant mass

- 3. Acceptance \times efficiency and non-prompt correction
- 4. Calculae the cross section of Ξ_c^0 as a function of p_{T}

$$\frac{1}{N_{mult}} \frac{dN_{mult}^{hadron}}{dp_{\mathrm{T}}}|_{|y|<0.5} = \frac{1}{N_{mult}} \frac{1}{\Delta p_{\mathrm{T}}} \frac{1}{\mathrm{BR}_{\mathrm{channel}}} \frac{f_{prompt} \varepsilon_{triger} N_{mult}^{hadron,raw}|_{|y|<0.5}}{2y_{fid}(Acc \times \varepsilon)_{prompt}}$$

Result

Transverse-momentum spectra of Ξ_c^0 measured in different multiplicity classes selected with V0M at forward rapidity. The corresponding ratios to inelastic collisions event with at least one charged particle in the pseudorapidity range $|\eta| < 1 \text{(INEL} > 0)$ are shown in the bottom panel

The Ξ_c^0/D^0 and Ξ_c^0/Λ_c^+ ratios measured in pp collisions at $\sqrt{s}=13$ TeV for different multiplicity classes are shown

The multiplicity dependence of Ξ_c^0/D^0 and Ξ_c^0/Λ_c^+ is not observed with the current uncertainties, but the new Run 3 data will allow making a significant statement.

The $\Xi_c^0/D^0(top)$ and $\Xi_c^0/\Lambda_c^+(bottom)$ ratios measured in pp collisions at $\sqrt{s}=13$ TeV for the lowest(left) and highest (right) multiplicity. The measurements are compared to PYTHIA 8 predictions with the Monash estimated in similar multiplicity classes.

The Monash and CR-BLC tune does not reproduce the Ξ_c^0/D^0 and Ξ_c^0/Λ_c^+ ratio, and does not show a multiplicity dependence.

Summary & Outlook

- The first measurement of Ξ_c^0/D^0 and Ξ_c^0/Λ_c^+ ratios as a function of charged-particle multiplicity in pp collisions at $\sqrt{s}=13$ TeV are shown. The $p_{\rm T}$ -differential Ξ_c^0/D^0 and Ξ_c^0/Λ_c^+ yield ratio does not show a strong multiplicity dependence as function of $p_{\rm T}$ with the uncertainties.
- More precise measurements with the data sample collected during the Run 3 of the LHC will allow us to further investigate the shape of the $p_{
 m T}$ integrated baryon-to-meson ratios versus multiplicity, extending the multiplicity reach to lower and higher multiplicity intervals.