Dilepton measurements with HADES in Ag + Ag and p + p collisions at 1.58 GeV beam energy

Karina Scharmann for the HADES Collaboration Justus-Liebig-Universität Gießen, Germany Contact: karina.scharmann@physik.uni-giessen.de

Motivation

The High-Acceptance-DiElectron-Spectrometer (HADES):

- Explore matter at high baryon densities and moderate temperatures
- Located at the SIS18 accelerator (1-2 GeV/nucleon) at GSI, Germany
- Fixed-target experiments in p, d, π and (heavy-) ion-induced reactions
- Large acceptance: $0^{\circ} < \phi < 360^{\circ}$ and $18^{\circ} < \theta < 85^{\circ}$ (Ag + Ag)

Particle identification:

FW

- RICH - leptons
- - photons, leptons
- RPC / TOF - hadrons
- MDC
- tracking system
- determination of collision centrality and event plane

Fig. 1: Schematic view of HADES including all sub-detectors for the p + p beamtime 2022.

Dilepton analysis within HADES:

- Electromagnetic probes offer direct access to all stages in heavy-ion collisions.
- The slope of the in-medium contribution allows for the extraction of the mean medium temperature in heavy-ion collisions.
- p + p(n) collisions serve as baseline for the understanding of the Ag + Ag data.

Electron analysis technique in HADES

Electron selection criteria:

- A velocity of $\beta > 0.9$ is required.
- 100 MeV/c MeV/c <math>(Ag + Ag)
- A RICH ring is demanded.
- PID based on the RICH and the rec. mass
- Conversion rejection based on the RICH
- Pairs with opening angles of $\alpha > 9^{\circ}$
- → The upgraded RICH with a new photon detection camera enhances the electron efficiency and conversion rejection.

(Normal-Rotated)/Normal, Purity > 70 % 0.85 -1000 -500 500 1000 0 p/q[MeV/c·e]

Fig. 2: Estimated electron purity in the RPC for the Ag + Ag beamtime.¹

Efficiency and acceptance correction:

Definition of acceptance: $a = \frac{N_{in,ee}|_{in\,Acc}}{N_{in,ee}|_{initial}}$ and efficiency: $\epsilon = \frac{1}{N_{in,ee}|_{initial}}$ Acceptance and efficiency are derived from electron / positron simulations.

Combinatorial background estimation $\langle BG_{+-} \rangle$:

- The geometric mean of like-sign electron pairs $(\langle FG \rangle)$ is multiplied with the k-factor.
- The k-factor is derived from the event-mixing-technique ($\langle fg \rangle$). Resulting background: $\langle BG_{+-} \rangle = \frac{\langle fg_{+-} \rangle}{2\sqrt{\langle fg_{++} \rangle \langle fg_{--} \rangle}} 2\sqrt{\langle FG_{++} \rangle \langle FG_{--} \rangle} = k2\sqrt{\langle FG_{++} \rangle \langle FG_{--} \rangle}$

Ag + Ag at 1.58 AGeV beam energy¹

5 billion Ag + Ag collisions at 1.58 AGeV are available after all quality selections. The measurements were taken in March 2019.

p + p at 1.58 GeV beam energy

0.5 billion p + p collisions at 1.58 GeV are available after all quality selections. The measurements were taken in February 2022.

- The dielectron spectrum shows a signal up to the ϕ meson mass region.
- Compared to simulated hadronic cocktail and nucleon-nucleon reference
- Strong contribution from the hot and dense phase is present
- The dielectron excess ratio has been calculated: $\langle R_{AA}^{AgAg} \rangle = 3.05$ (main uncertainty from missing NN reference).
- The medium temperature $kT = 77.9^{+3.7}_{-2.9} MeV$ was extracted from a thermal fit.
- Estimated hadron multiplicities: $\pi^0_{mult}\big|_{0-40\%}=7.37\pm0.43\big|_{sys}\pm0.11\big|_{stat}$ and $\omega_{mult}|_{0-40\%} = (4.53 \pm 0.50|_{sys} \pm 0.63|_{stat}) \cdot 10^{-3}$
- The dielectron spectrum shows a signal up to $0.5 \ GeV/c^{2}$.
- It is scaled towards cross sections using the integrated luminosity $L_{int} = 400 \frac{1}{nh}$ for elastic p + p collisions in HADES (PT2 triggered events) and the calculated invariant mass dependent trigger bias factor.
- Complete systematics of e^+e^- production in p+p collisions
- ⁴ 1.25 GeV acceptance more restrictive than others
- ⁵ R. Abou-Yassine, PhD TU Darmstadt (ongoing)

Summary

- In-medium effects clearly seen in Ag + Ag dielectron analysis: excess radiation, in-medium temperature
- p+p data at 1.58 GeV needed to provide NN reference for precise Ag+Ag results and comparison to other HADES energies
- Ongoing work: final corrections, estimate dielectron yield in p+n

