Measurements of inclusive $\psi(2 \mathrm{~S})$ to J / Ψ ratio at midrapidity in pp collisions at $\sqrt{s}=13.6 \mathrm{TeV}$ with ALICE

Yuan Zhang, for the ALICE Collaboration

University of Science and Technology of China yuan.z@cern.ch

ALICE detector (Run 2 configuration and Run 3 upgrade)
$>$ Inclusive quarkonia are reconstructed in $\mathrm{e}^{+} \mathrm{e}^{-}$channel at midrapidity ($|y|<0.9$) down to $p_{\mathrm{T}}=0$.

Data analysis procedure

> Efficiency correction:
> Dataset:
$>\mathrm{pp}$ collisions at $\sqrt{S}=13.6 \mathrm{TeV}$ collected in 2022 with the ALICE upgraded detector.
$>524 \times 10^{9}$ minimum-bias (MB) events collected thanks to the continuous readout
$>$ Electron identification via TPC $\mathrm{dE} / \mathrm{d} x$.
$>$ Signal extraction:
$>$ Combinatorial background is subtracted using mixed-event unlike-sign method.
> Residual background: second order polynomial function divided by an exponential function.
> Signal shapes are described by Double Crystal Ball functions. Possible differences between the J / ψ and $\psi(2 S)$ shapes are assigned as systematic uncertainties.
$>$ Tracking efficiency and efficiency related to the choice of the signal mass window largely cancel out in the $\psi(2 \mathrm{~S})$-to-J/ ψ ratio. Residuals are assigned as systematic uncertainties
> PID efficiency is assessed using a data-driven approach

- Acceptance effects are corrected with a MC simulation
$\frac{\sigma_{\Psi(2 \mathrm{~S})}}{\sigma_{\mathrm{J} / \psi}}=\frac{N_{\Psi(2 \mathrm{~S})}}{N_{\mathrm{J} / \psi}} \frac{(A \times \varepsilon)_{\mathrm{J} / \psi}}{(A \times \varepsilon)_{\Psi(2 \mathrm{~S})}} \frac{B R_{\mathrm{J} / \psi \rightarrow \mathrm{ee}}}{B R_{\Psi(2 \mathrm{~S}) \rightarrow \mathrm{ee}}}$

N : raw counts.
$>A \times \varepsilon$: acceptance times efficiency
$>$ BR: Branching ratio

- The measured p_{T}-integrated ratio without BR uncertainty is 0.155 ± 0.010 (stat.) ± 0.014 (syst.)
> The results (red points) are shown together with existing results from ALICE at forward rapidity and from other experiments ${ }^{[1-10]}$.
$>$ In agreement with other results.
$>$ No significant energy and rapidity dependence.
> Slight p_{T} dependence (also expected from models).

$>$ Comparison with models ${ }^{[11-14]}$:
> NRQCD overestimates the ratio at high p_{T}, but CGC + NRQCD describes the ratio at low and intermediate p_{T}
> ICEM can reproduce the data.

Summary and outlook

$>$ The $\psi(2 \mathrm{~S})$-to- J / ψ ratio is measured in pp collision at $\sqrt{s}=13.6 \mathrm{TeV}$ at midrapidity.
$>$ In agreement with other results.
$>$ A slight p_{T} dependence (also expected from models).
$>$ No significant energy and rapidity dependence.
$>$ Comparison with models ${ }^{[11-14]}$.
$>$ NRQCD overestimates the ratio
$>$ CGC + NRQCD describes the ratio at low and intermediate p_{T} >ICEM can reproduce the data.
$>$ Provides a reference for investigating the quark-gluon plasma in nucleusnucleus collisions and the cold nuclear matter effects in proton-nucleus collisions.
$>$ The prompt and non-prompt $\psi(2 \mathrm{~S})$-to- J / ψ ratio as well as the cross section of prompt/non-prompt charmonia will be measured in Run 3.

Reference

