

Measurements of inclusive $\psi(2S)$ to J/ψ ratio at midrapidity in pp collisions at \sqrt{s} = 13.6 TeV with ALICE

Yuan Zhang, for the ALICE Collaboration

University of Science and Technology of China yuan.z@cern.ch

- Crucial for studying charmonium production mechanisms and testing different QCD-based models.
 - ➤ Heavy-quark production (perturbative QCD)
 - Formation of the bound charmonium states (non-perturbative QCD)
- Study the rapidity dependence of charmonium production by comparing to similar measurements at forward rapidity at the same collision energy^[1].
- Used as reference for studying AA collisions.

ALICE detector (Run 2 configuration and Run 3 upgrade)

 \triangleright Inclusive quarkonia are reconstructed in e⁺e⁻ channel at midrapidity (|y| < 0.9) down to $p_{T} = 0$.

- - Particle identification via dE/dxmeasurement
 - Momentum measurement
 - Readout chambers replaced with Gas Electron Multiplier (GEM)
- Radius of innermost layer: 39 mm \Rightarrow 23mm.
- Enable continuous readout of Pb-Pb events at an interaction rate up to 50 kHz ($^{\sim}10^{2}$ w.r.t. run 2). Material budget for each of the 3 innermost layers: $1.15\% \Rightarrow 0.35\%$.

Data analysis procedure

(MAPS).

- > Dataset:
 - \triangleright pp collisions at \sqrt{s} = 13.6 TeV collected in 2022 with the ALICE upgraded detector.
 - \gt 524 × 10⁹ minimum-bias (MB) events collected thanks to the continuous readout.
- \triangleright Electron identification via TPC dE/dx.
- Signal extraction:
 - Combinatorial background is subtracted using mixed-event unlike-sign method.
 - Residual background: second order polynomial function divided by an exponential function.
 - Signal shapes are described by Double Crystal Ball functions. Possible differences between the J/ ψ and ψ (2S) shapes are assigned as systematic uncertainties.
- Efficiency correction:
 - Tracking efficiency and efficiency related to the choice of the signal mass window largely cancel out in the $\psi(2S)$ -to-J/ ψ ratio. Residuals are assigned as systematic uncertainties.
 - > PID efficiency is assessed using a data-driven approach.
 - Acceptance effects are corrected with a MC simulation.

Results

$$\frac{\sigma_{\psi(2S)}}{\sigma_{J/\psi}} = \frac{N_{\psi(2S)}}{N_{J/\psi}} \frac{(A \times \varepsilon)_{J/\psi}}{(A \times \varepsilon)_{\psi(2S)}} \frac{BR_{J/\psi \to ee}}{BR_{\psi(2S) \to ee}}$$

- ➤ N: raw counts.
- $\triangleright A \times \varepsilon$: acceptance times efficiency
- > BR: Branching ratio
- \triangleright The measured p_{T} -integrated ratio without BR uncertainty is 0.155 ± 0.010 (stat.) ± 0.014 (syst.)
- > The results (red points) are shown together with existing results from ALICE at forward rapidity and from other experiments [1-10].
 - In agreement with other results.
 - No significant energy and rapidity dependence.
 - \triangleright Slight p_T dependence (also expected from models).

- \triangleright Comparison with models^[11-14]:
 - NRQCD overestimates the ratio at high p_T , but CGC + NRQCD describes the ratio at low and intermediate p_{T} .
 - > ICEM can reproduce the data.

Summary and outlook

- The $\psi(2S)$ -to-J/ ψ ratio is measured in pp collision at \sqrt{s} = 13.6 TeV at midrapidity.
 - In agreement with other results.
 - \triangleright A slight p_{T} dependence (also expected from models).
 - > No significant energy and rapidity dependence.
 - \triangleright Comparison with models^[11-14].
 - ➤ NRQCD overestimates the ratio.
 - \triangleright CGC + NRQCD describes the ratio at low and intermediate p_{T} .
 - >ICEM can reproduce the data.
- > Provides a reference for investigating the quark-gluon plasma in nucleusnucleus collisions and the cold nuclear matter effects in proton-nucleus collisions.
- The prompt and non-prompt $\psi(2S)$ -to-J/ ψ ratio as well as the cross section of prompt/non-prompt charmonia will be measured in Run 3.

Reference

[1] ALICE Collaboration, S. Acharya et al., Eur. Phys. J. C 83 (2023) 61

[4] STAR Collaboration, J. Adam et al., Phys. Rev. D 100 (2019) 052009.

[2] LHCb Collaboration, R. Aaij et al., J. Phys. G 40 (2013) 045001.

[6] A.G. Clark et al., Nucl. Phys. B 142 (1978) 29.

[7] HERA-B Collaboration, I. Abt et al., Eur. Phys. J.C 49 (2007) 545-558. [8] CMS Collaboration, S. Chatrchyan et al., JHEP 02 (2012) 011.

[9] CDF Collaboration, F. Abe et al., Phys.Rev.Lett. 79 (1997) 572-577. [10] ATLAS Collaboration, G. Aad et al., Eur. Phys. J. C 76 (2016) 5, 283.

[3] E705 Collaboration, L. Antoniazzi et al., Phys.Rev.Lett. 70 (1993) 383-386. [11] Y-Q. Ma et al., Phys.Rev.Lett. 106 (2011) 042002.

[12] M. Butenschoen et al., Phys.Rev.Lett. 106 (2011) 022003.

[13] Y-Q. Ma et al., Phys.Rev.D 94 (2016) 11, 114029. [14] M. Cacciari et al., JHEP 10 (2012) 137.

[5] PHENIX Collaboration, A. Adare et al., Phys. Rev. D 85 (2012) 092004.

