

Azimuthal correlations of heavy-flavor decay electrons and charged particles with the ALICE detector

Amanda Flores for the ALICE Collaboration

University of Texas at Austin

Motivation

- Heavy-Flavor (HF) quarks are produced via hard-scattering in heavy-ion collisions and interact with the quark-gluon plasma (QGP) via elastic and inelastic collisions
- Jets are modified by the medium, which is in turn influenced by them:
 - Medium induced soft-gluon radiation from the traversing heavy quark (gluonsstrahlung)
 - Jet induces Mach-cone-like excitation within the medium
 - Both aforementioned effects could induce an enhancement of low $p_{\rm T}$ hadrons inside the jet
 - Jet quenching of away-side jet
- Heavy-quark interaction with the QGP medium and modification of its fragmentation can be studied using azimuthal correlations of heavyflavor particles and charged hadrons
- The nuclear modification factor (I_{AA}) can be used to study the effect of the QGP medium on HF jet

- $\varphi_{\rm Trig}$: Azimuthal angle of trigger particle
- φ_{Asso} : Azimuthal angle of associated particle
- Near-side: $\Delta \phi \approx 0$
- Away-side: $\Delta \varphi \approx \pi$
- $\Delta \varphi$ (c, b \rightarrow e h) $\equiv \varphi_{\text{Trig}}^{\text{c,b} \rightarrow \text{e}} \varphi_{\text{Asso}}^{\text{ch.part.}}$
- Near-Side (NS) peak: particles produced in the same jet as the trigger
- Away-Side (AS) peak: particles produced in the recoil jet
- Trigger particle $(c, b \rightarrow e)$ is selected:
- $4 < p_{\rm T} < 12$ (GeV/c) • Associated (charged) particles are selected in 5 $p_{\rm T}$ ranges: from **1 to 7 (GeV/c)**

G.-Y. Qin et al, PRL 103, 152303 (2009)¹

parton shower

fragmentation

• The *I*_{AA} is defined as the ratio of per-trigger associated yield in Pb—Pb collisions to pp:

 $I_{AA} =$

Analysis strategy with the ALICE detector

- EID performed using TPC and EMCal; hadron contamination is subtracted
- 2D ($\Delta \varphi$, $\Delta \eta$) distribution between electron and charged hadrons is constructed
- Detector acceptance effects on 2D distribution corrected by using mixed-event technique
- Project 2D distribution to 1D $\Delta \phi$ for $|\Delta \eta| < 1$
- Contribution of electrons not from HF sources ($\gamma \rightarrow e^-e^+$; $\eta, \pi^0 \rightarrow e^-e^+$) is reconstructed with invariant-mass method via unlike-sign (ULS) electron pairs
 - Tagging efficiency applied to correct unidentified photonic and Dalitz-produced electron contribution
- $\Delta \varphi$ distribution corrected with associated hadron tracking efficiency and secondary particle contamination factor

• This analysis was performed on Pb—Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV and collected by ALICE in the centrality classes 0 – 10% and 30 – 50%

Azimuthal correlations

- $\Delta \varphi$ c, b \rightarrow e charged particle distribution, normalized per heavy-flavor electron trigger in 0 10% centrality
- Baseline function $B(\Delta \varphi)$ is used to parameterize the uncorrelated background in the transverse region (including a modulation induced by elliptic flow):

 $B(\Delta \varphi) = b \left(1 + 2v_2^{c,b \to e} v_2^{ch.part.} \right) \cos(2\Delta \varphi)^{4,5}$

- Variations of the possible baseline position take into account alternate values of pedestal (b) and the minimum and maximum measured v_2 values
- (Top) $\Delta \varphi$ c, b \rightarrow e charged particle correlation in **0 10%** centrality after baseline subtraction and compared to pp
 - NS peak is qualitatively higher in Pb—Pb at low $p_{\rm T}$ compared to pp; similar to pp at high $p_{\rm T}$
 - AS peak appears higher and broader at low $p_{\rm T}$; suppressed at high $p_{\rm T}$ compared to pp
- (Bottom) $\Delta \varphi$ c, b \rightarrow e charged particle correlation in **30 50%** centrality compared to pp²
 - NS peaks in Pb—Pb similar to pp
 - AS peaks in Pb—Pb suppressed compared to pp

- Per-trigger associated yield:
 - Obtained by integrating the distributions in the NS region $|\Delta \varphi| < 1$ and AS region $|\Delta \varphi - \pi| < 1.5$
 - Yield decreases as a function of associate $p_{\rm T}$ for both NS and AS, as well as for Pb—Pb and pp
 - These differences between pp and Pb—Pb are better quantified with the I_{AA} observable

$I_{\rm AA} 0 - 10\%$:

- NS: No significant enhancement at low $p_{\rm T}$ due to large uncertainties
 - Combined significance of 1.31σ above 1 for $1 < p_T < 3$ GeV/c
 - Fluctuates about unity at higher $p_{\rm T}$
 - AS: Hint of suppression at high $p_{\rm T}$
 - Significance of ~2.5 σ for I_{AA} < 1 for p_{T} > 4 GeV/c

*I*_{AA} 30 – 50%:

- NS: Consistent with unity for all $p_{\rm T}$
- AS: Data fluctuate within large uncertainties but point towards a suppression

• Although $\Delta \varphi$ c, b \rightarrow e — h has large uncertainties, the I_{AA} follows similar associated $p_{\rm T}$ trends and has consistent values with LF $I_{\rm AA}$ for both NS and AS

Physics process that can produce these effects in the I_{AA}

Comparison of heavy-flavor with light-flavor

Summary

- c, b \rightarrow e h azimuthal correlations were obtained in 0 10% and 30 50% Pb—Pb at $\sqrt{s_{NN}}$ = 5.02 TeV
- $\Delta \varphi$ distributions NS and AS yield compared between Pb—Pb and pp
- The NS and AS I_{AA} consistent with LF within large uncertainties in 0 10%Pb—Pb collisions
- Possible suppression of high $p_{\rm T}$ particles on the AS for both centralities
- NS I_{AA} consistent with unity for 30 50%
- Future prospects for Run 3:
 - Larger data sample and improved technique to reduce systematic uncertainties for c, $b \rightarrow e - h$ correlation
- Azimuthal correlations of D meson charged particles and c, $b \rightarrow e D$ mesons

References 1: G.-Y. Qin et al, PRL 103, 152303 (2009) 2: EPJ C 83 (2023) 741 3: EPJ C 83 (2023) 497 4: JHEP 07 (2018) 103 (ALICE) 5: Phys. Lett. B 807 (2020) 135595 (ATLAS)