

Strangeness enhancement at LHCb

Desmond Shangase on behalf of the LHCb Collaboration University of Michigan 30th Quark Matter- Houston, September 9th 2023

Strangeness enhancement in b-quark hadronization

- Dependence on local particle density
- Trend disagrees with purely Lund fragmentation picture at low p_T
- Qualitatively consistent with expectations from coalescence

Phys.Rev.Lett. 131 (2023) 6, 061901

Strangeness enhancement in c-quark hadronization

- Enhancement in both proton-going and lon-going region
- Enhancement persists in a wider p_T range than in beauty

preliminary

Takeaways and Follow-ups

- First observations of small-systems strangeness enhancement in heavy flavor mesons at LHCb
 - Both beauty and charm results display an enhancement in local particle densities at low-p₊
 - The LHCb spectrometer is uniquely suited for probing hadronization mechanisms in heavy flavor and at forward rapidity
- Efforts are continuing at LHCb to continue probing small systems using a variety of species and collisions systems
- Baryon-to-meson ratios in:
 - light flavor (pp)
 - beauty (pp)
 - o charm (pp, pPb)
 - Further strangeness production
 - light flavor (pp, pPb, pHe*, pNe*)
 - o charm (pp)

 $pp \sqrt{s} = 13 \text{ TeV}$ LHCb $p_{\rm T} > 0 \text{ GeV/}c$ 5.4 fb⁻¹ preliminary 0.5 0.40.3 $+pp \rightarrow b\overline{b} + X$ Global uncertainty: +19% 0.2

^{* -} Utilizing SMOG2 fixed target program

Thank You

D. SHANGASE QM 2023 5