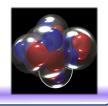


Measurements of harmonic flow and their fluctuations in $^{16}\mathrm{O} + ^{16}\mathrm{O}$ collisions at $\sqrt{s_{_{\mathrm{NN}}}} = 200\,\mathrm{GeV}$ from STAR

Zhengxi Yan¹ (zhengxi1yan@gmail.com) for the STAR Collaboration


Stony Brook University

Abstract

Understanding of QGP formation and evolution is limited by various uncertainties in the initial stages of the heavy-ion collision. Small-sized systems, due to their reduced system size and lifetime, may provide a better understanding of the possible formation and evolution of QGP. The recently reconstructed data from minimum bias and central triggered $^{16}\mathrm{O}+^{16}\mathrm{O}$ collisions at $\sqrt{s_{_{\mathrm{NN}}}}=200$ GeV from STAR provide an unqiue and exciting opportunity to study the small system. We measure v_n as a function of p_{T} and multiplicity in O+O collisions using various method to minimize non-flow and to provide insights into initial condition and the emergence of collectivity in small systems.

Motivation: flow in small system

- Collectivity: Mechanisms for emergence of collectivity in small systems are not well understood. Previous study demonstrates the importance of sub-nucleon fluctuation.
- Initial state: More direct study with reduced final state interactions compared to larger systems, yielding insights unique to those compact systems, where many-body correlations may eignificantly influence the nuclear Remit History

2 sub-event method

 $Q_n = e^{in\phi}$

Anisotropic flow

Two-particle correlation method Require pair $|\Delta \eta| > 1.0$

$$rac{1}{N^{
m pair}}rac{dN^{
m pair}}{d\Delta\phi}=rac{1}{2\pi}\left(1+2\sum_{}^{\infty}c_{n\Delta}\cos n\Delta\phi
ight)$$

$$c_n \left(p_T^a, p_T^b \right) = v_n \left(p_T^a \right) v_n \left(p_T^a \right) + \delta_{\text{Non-Flow}}$$

c1 non-flow substraction

$$\delta_{Non-Flow} = c_1/c_1^{peripheral} \times c_n^{peripheral}$$

TPC-EPD two-particle correlation

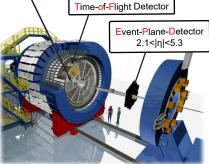
Wide η gap supresses non-flow

$$v_n(TPCa, p_T) = \frac{Q_n^{TPCa}Q_n^{*EPD}}{\sqrt{\frac{(Q_n^{TPCb}Q_n^{*EPD}) \times (Q_n^{TPCc}Q_n^{*EPD})}{Q_n^{TPCb}Q_n^{*TPCc}}}}$$

 $v_n^2\{2\} = \langle e^{in(\phi_1^b - \phi_2^c)} \rangle \rangle$

Four-particle:

Two-particle:

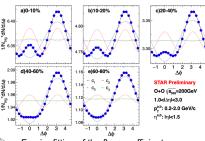

& Q-vector

TPCc: $-1.5 < \eta < -0.5$ $\mathrm{EPD:}\, 2.1 < |\eta| < 5.3$ $-v_n^4\{4\} = \langle e^{in(\phi_1^b + \phi_2^b - \phi_3^c - \phi_4^c)} \rangle > -2v_n^4\{2\}$

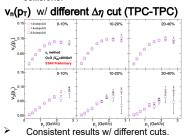
Time-Projection-Chamber |η|<1.5

Full azimuthal coverage &

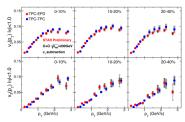
wide η range

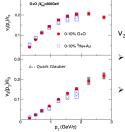

- Dataset: 2021 $\sqrt{s_{\scriptscriptstyle {\rm NN}}}=200$ GeV $^{\rm 16}{\rm O+^{16}O}$ collisions
- Events: 600M min-bias, 250M high-multiplicity trigger
- Use charged particle tracks with pT ∈ (0.2, 2) GeV.

4.Results


TPCa: $|\eta| < 1.0$ TPCb: $0.5 < \eta < 1.5$

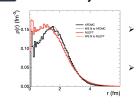
Di-hadron correlation


w/ c1 non-flow subtraction method


- Fourier fitting of the flow coefficients.
- Non-flow subtraction using 60-80% centrality collisions

$v_n(p_T)$ from TPC-TPC vs. TPC-EPD

Mid-rapidity $|\eta|$ gap method (TPC-TPC) consistent with mid-forward/backward rapidity correlation method (TPC-EPD).


$v_n(p_T)$ in different systems

 $v_2/\epsilon_2, v_3/\epsilon_3 : O+O \approx {}^{3}He+Au$

 $\nu_{_{n}}/\epsilon_{_{n}}$ scaling agrees in two system using quark glauber calculation.

Similar agreement is found in earlier study[2]. It suggests the importance of subnucleon fluctuations.

Multi-body correlation in initial state

NLEFT includes manybody correlation in calculating the 3D geometry of oxygen. Radial distribution (2D) obtained from fitting Woods-Saxon function to NLEFT.

 v_2 {4}/ v_2 {2} vs. centrality

Correction Needed This Figure

- $v_2{4}/v_2{2}$ is a sensitive probe to the initial state geomery and fluctuations.
- Data agrees more with realistic 3D geometry with many body correlations.

5.Summary and outook

- First azimuthal anisotropy flow coefficients measurement in ¹⁶O+¹⁶O collisions.
 - ν_n(pT) consistent with sub-nucleonic eccentricity fluctuations.
 - v₂{4}/v₂{2} indicates many-body correlations and detailed 3D nuclear structure beyond radial distribution.
- In the future, compare measurements with hydro/transport model calculations to investigate the roles of different evolution stages in developing collectivity within small system collisions.

Reference

[1] A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998)

[2] M. I. Abdulhamid et al. (STAR Collaboration) Phys. Rev. Lett. 130, 242301 (2023)

[3] B. Schenke, C. Shen, and P. Tribedy, Phys. Lett. B 803, 135322 (2020)

[4] NLEFT: Lu et al., Phys. Lett. B 797, 134863 (2019)

