

Charged Particle Multiplicity Distribution in pp Collisions at $\sqrt{s} = 13.6$ TeV with ALICE

Joonsuk Bae and Hyungjun Lee (Sungkyunkwan University) for the ALICE Collaboration

30th CONFERENCE ON ULTRA-RELATIVISTIC NUCLEUS-NUCLEUS COLLISIONS: Quark Matter 2023

Motivation

Pseudo-rapidity density of charged particles $dN_{ch}/d\eta$

- Key observable for
 - Understanding the general properties of particle production in high-energy hadronic collisions.
 - Confirming detector performances in Run 3 after the upgrade.
- Measurements putting constraints on particle production mechanisms and providing input to Monte Carlo event generators.
- Provides a reference for investigating nuclear effects in nucleusnucleus and proton-nucleus collisions.

Upgraded Detectors in ALICE Run 3

 The ALICE in Run 3 collects much larger data after the upgrade with continuous (trigger less) readout.

Inner Tracking System (ITS)			
		ITS 1	ITS 2
	Technology	Hybrid pixel, strip, drift	MAPS (monolithic active pixel sensors)
	# of layers	6	7
	Rapidity coverage	$ \eta \le 0.9$	$ \eta \le 1.3$
	Material budget/layer	1.14% X ₀	Inner : $0.36\% X_0$ Outer : $1.10\% X_0$
	Spatial resolution	12 × 100 μm	5 × 5 μm
	Max rate(Pb-Pb)	1 kHz	50 kHz

Analysis

- INEL>0 : at least one primary charged particle in $|\eta| < 1$
 - That is effective event class for the collection of non-diffractive event
- Multiplicity selection is based on signal sum of FTOA and FTOC
- Primary vertex selection (z_{vtx}) selection: $|z_{vtx}| < 10$ cm
- Track definition: ITS and TPC global tracks.
- Primary track selection with a DCA (Distance of closest approach) technique.

Results: pp collisions at \sqrt{s} = 13.6 TeV

- ${
 m d}N_{
 m ch}/{
 m d}\eta$ distribution in $|\eta|<0.5$ using ITS and TPC global tracks.
- Compared to the distributions of PYTHIA8 Monash, slightly underestimating the data.
- The result possibly provides further constraints on non-diffractive charged particle production mechanisms at the new center of mass energy.

- $\langle dN_{\rm ch}/d\eta \rangle$ measured in $|\eta| < 0.5$ is shown as a function of \sqrt{s} .
- $\langle dN_{\rm ch}/d\eta \rangle$ at \sqrt{s} = 13.6 TeV for INEL >0 events is in agreement with the power-law fit from smaller energies.

- Multiplicity dependence $dN_{\rm ch}/d\eta$ in Run 3 are expected to compared with the results in different center of mass energies in Run 2.
- Multiplicity classes determined by VOA & C (Run 2).

Summary

- $dN_{\rm ch}/d\eta$ distributions in $|\eta| < 0.5$ for INEL>0 events in pp collisions at $\sqrt{s} = 13.6$ TeV.
 - Ongoing analysis for different multiplicity classes estimated by FTOA & C and for Pb—Pb collisions at \sqrt{s} = 5.36 TeV
- PYTHIA8 Monash slightly underestimate the data for the INEL>0 events.
- Good detector performance is confirmed with dN_{ch}/dη distributions for ALICE detectors in Run 3.

Quark Matter 2023 E-mail: <u>jbae@cern.ch</u>, leehy@cern.ch