Measurements of jet v_2 in medium-sized systems at STAR

Tristan Protzman for the STAR Collaboration Lehigh University

Abstract

Hard partonic scatterings, occurring at the early stages of heavy-ion collisions, produce jets, which experience the full evolution of the quark-gluon plasma (QGP). As they traverse through the QGP, jets lose energy through collisional and radiative processes, collectively known as jet quenching. In semicentral heavy-ion events, the QGP initially takes an approximately elliptical shape in the transverse plane whose mean in-plane and out-of-plane distances differ. This fact can be used to vary the average path length for jets traversing the QGP, and those traveling in-plane should experience less quenching effects than those traveling out-of-plane. This differential quenching manifests as a suppression of jet yield out-of-plane relative to in-plane, quantified by jet v_2 , the second order Fourier coefficient. In this poster, charged jet v_2 will be presented from Ru+Ru, Zr+Zr, and O+O collisions at $\sqrt{s_{\rm NN}} = 200 \text{ GeV}$ with multiple jet resolution parameters. Studying jet v_2 in collision systems of varying sizes may help disentangle path-length dependent quenching effects and other effects which could give rise to anisotropies in systems even smaller than O+O collisions.

Ru+Ru and Zr+Zr charged jet v_2

- Jet energy scale corrected by area-based subtraction
 - $p_{\rm T}(\phi) = p_{\rm T}^{\rm measured} \rho(\phi)A$
- Average background density ρ modulated with assumed underlying event flow of 4%
- Positive charged jet v_2 observed for high transverse momentum tracks, R=0.2, R=0.4, and R=0.6 anti- $k_{\rm T}$ hard core matched jets

• No strong transverse

momentum dependence

Jet v_2

- Semi-central collisions produce an
 - approximately elliptical QGP
 - Orientation defined by second order event plane, Ψ_2

STAR

- Jets which travel in-plane will experience a shorter path length through the medium than those which travel out-of-plane
 - The expected in-plane jet yield should be greater than the out-of-plane yield due to path length dependent quenching
- The anisotropy is reported with the second order Fourier coefficient,
 - Though the language is the same, high $p_{\rm T} v_2$ (quenching) is driven by different effects than low $p_{\mathrm{T}} v_2$ (flow)

Ru+Ru & Zr+Zr R dependence

- Under naïve expectation that larger cones capture more radiated energy, we might expect jet v_2 to decrease with increasing R
- To remove correlations in the statistical uncertainties, the dataset was divided in half such that jets of different radii were measured using statistically independent samples
- No evidence for R dependence of jet v_2 for hard core selected jets within large uncertainties
- Hard core selection imposes a fragmentation bias and influences where in the collisional

Combinatorial jets

- Combinatorial jets were found to significantly enhance the observed jet v_2
 - Demonstrated with toy model featuring no jet-like objects but still yields a large jet v_2
- A hard core matching routine was used to mitigate this
 - Tracks with $p_{\rm T} > 2$ GeV/c are selected and clustered with anti- $k_{\rm T}$ algorithm into hard core jets
 - Idea: Cluster only tracks from hard scattering
 - Hard core jets with $p_T > 10$ GeV/c are geometrically matched to jets with constituent $p_T > 0.2$ GeV/c if the jet axis satisfy $\sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} < R$
 - Where R is the jet resolution parameter
- Only jets matched with a hard core jet are analyzed

0.09 Truth Particle v _o = 0.0	5
$L_{0.08}$ Anti- $k_{T} R=0.2, p_{T}^{jet} > 10$) GeV
No Hard Core Matchir	ng Requirement
0.07	+
	· · · · · · · · · · · · · · · · · · ·
	★
0.05	
0.04	
0.03	
0.02	
0 01 Reconstructed I	Particle v ₂ : 0.049
Reconstructed	let v ₂ : 0.245
$\begin{array}{cccc} 0 & & & \\ 0 & & 1 & 2 \end{array}$	3 4 5 6
Hard Cor	e Jets
Geometr	ical
Matchir	na
	19
All Jets	S
	Previously used in
Bhys Poy Lo	++ 110 062201 (2017)
1.3 2 1 0 FILYS. NEV. LE	((. 119, 002301 (2017)
Phys. Rev	. C 105, 044906 (2022)

STAR detector and event plane resolution

- Event Plane Detector upgrade at STAR allows for determination of the event plane at large rapidity
 - Installed in 2018
 - Scintillating hit detector
 - 16 η divisions, 24 ϕ divisions
- Rapidity gap between jet finding and event plane

Event Plane Detectors

<u>R=0.6</u> R=0.2

geometry jets are found

O+O charged jet v_2

• O+O is a significantly smaller system than Ru+Ru & Zr+Zr

20-60% Central $< N_{part} >$ System 0+0 10.98 Ru+Ru & Zr+Zr 51.09

- Hints of sizable charged jet v_2 in small systems at RHIC
- May include significant non-flow contribution – more study needed
- Precision limited by low event plane resolution
- Could this be a similar mechanism to jet v_2 observed by ATLAS in p+Pb? [2]

Summary

> 0.3 **STAR** Preliminary √S_{NN}=200 GeV 0.25 Jet $\ln l < 1-R$ Event Plane 2.1 $< l\eta l < 5.1$ 0.2 20-60% Mid-Central \Box No Correction on p_{τ} Applied 0.15 Anti-k_T HC Matched Jets $10 \le p_{\tau}^{jet} \le 22.5 \text{ GeV/c}$ 0.1 ÷ ¢ No Non-flow Subtraction 0.05 - ---- 0+0 -0.05 R=0.2 R=0.4 R=0.6 Jet Resolution

[1]: ALICE collaboration, Azimuthal anisotropy of charged jet production in $\sqrt{s_{\rm NN}}$ = 2.76 TeV Pb–Pb collisions, Nucl. Phys. A 956 (2016) 629 [1511.05352].

determination avoids autocorrelation • Event plane measured in $2.1 < |\eta| < 5.1$

Time Projection Chamber

- Charged jets measured in Time Projection Chamber
 - $|\eta| < 1$, full azimuthal coverage
- Analyze electromagnetic calorimeter triggered events
 - $|\eta| < 1$, full azimuthal coverage, $E_{\rm T}^{\rm trig} > 3.4 \,{\rm GeV}$
- Event geometry information such as centrality class and event plane angle can be used to control the mean path length which jets experience
- A positive jet v_2 is observed in mid-central $\sqrt{s_{\rm NN}} = 200 \, {\rm GeV} \, {\rm Ru} + {\rm Ru} \, {\rm \&} \, {\rm Zr} + {\rm Zr} \, {\rm collisions}$, largely independent of jet transverse momentum or jet resolution parameter
- Hints of a sizable jet v_2 in mid-central
- $\sqrt{s_{\rm NN}} = 200 \, {\rm GeV} \, {\rm O+O}$ collisions are observed
- Good understanding of geometry and fragmentation biases must be reached to properly interpret results

[2]: ATLAS collaboration, Transverse momentum and process dependent azimuthal anisotropies in $\sqrt{s_{NN}}$ = 8.16 TeV p+Pb collisions with the ATLAS detector, Eur. Phys. J. C 80 (2020) 73 [1910.13978].

This material is based upon work supported by the National Science Foundation under Grant No. 1945296

Supported in part by the U.S. DEPARTMENT OF ENERGY

Office of Science

The STAR Collaboration https://drupal.star.bnl.gov/STAR/presentations