# Ashish Jalotra, Sanjeev Singh Sambyal (for the STAR Collaboration), University of Jammu, India *ajalotra1@bnl.gov, *Sanjeevsambyal@yahoo.com 


#### Abstract

Strangeness production is considered a sensitive probe to the properties of the medium created in heavy-ion collisions. The RHIC Beam Energy Scan Program (BES) is designed to investigate the QCD phase diagram and search for a potential QCD critical point. The BES-II program covers a wide energy range from $\sqrt{s_{N N}}=3$ to 54.4 GeV . Of particular interest is the high baryon density region which can be explored through production of strange hadrons $\left(K_{s}^{0}, \Lambda\right)$ at lower energies from the fixed target program. Such studies can also help understand their production mechanism in high baryon density medium. In this poster, we will report measurements of strange particle $\left(K_{s}^{0}, \Lambda\right)$ production in Au+Au collisions at $\sqrt{s_{N N}}=7.2 \mathrm{GeV}$. The data were taken in 2018 by the STAR experiment with the fixed target configuration. Analysis status of the $K_{s}^{0}$ and $\Lambda$ measurements in this dataset will be discussed.


## Motivation

The Fixed-Target Program expands the range of the RHIC Beam Energy Scan (BES) to higher values of $\mu_{B}$ (baryon chemical potential).

- Search for disappearance of QGP signatures.
- Search for evidence of a first order phase transition.[1]
- Search for critical point.


## Why Fixed-Target program?

STAR Fixed-Target Program extends the collision energy range in BES II to lower energies than what is feasible at RHIC with colliding beams.

- Data from $\sqrt{s_{N N}}<7 \mathrm{GeV}$ could help determine evidences of phase transitions or criticality at lower energies.
B. Kimelman, Quark Matter (2022)


Strange hadrons $\left(K_{S}^{0}, \Lambda\right)$ are excellent probe for identifying the phase boundary and the onset of deconfinement.[2]

## Particle Reconstruction

KFParticle: Reconstruction package for short-lived particles.
$K_{S}^{0} \rightarrow \pi^{-} \pi^{+}$
BR:(69.05 $\pm 0.05) \%$

$c \tau=2.68 \mathrm{~cm}$ | $\Lambda \rightarrow p \pi^{-}$ |
| :---: |
| $\mathrm{BR}:(64.1 \pm 0.05) \%$ |
| $c \tau=7.89 \mathrm{~cm}$ |

## Cuts Applied

$>10$ (daughter A)

- $\chi_{\text {prim }}^{2}$

$$
2
$$

- $\chi_{\text {prim }}^{2}>10$ (daughter B)
- $\chi_{\text {topo }}^{2}<5$

https://drupal.star.bnl.gov/STAR/book/ export/html/39875


## Overview of The STAR Detector



The main objective of the STAR detector is to study the formation and characteristics of quark gluon plasma (QGP)

## Data Set and Event Selection

## Data set

- $\mathrm{Au}+\mathrm{Au} @ \sqrt{s_{N N}}=7.2 \mathrm{Gev}$
- Events Analysed ~ 148 million
- Particles Studied: $K_{S}^{0}, \Lambda$
- $V_{r}<2 \mathrm{~cm}$

Gold Target

- $250 \mu \mathrm{~m}$ foil.
- 2 cm below the nominal beam axis.
- 2 m from centre of STAR.

Invariant Mass Distributions


- Red line : Double gaussian $+2^{n d_{\text {order }}}$ polynomial
(signal+background)
- Blue line : $2^{\text {nd }}$ order polynomial (background)
. Green line : double gaussian (signal)
D. Cebra, annual APS meet, virtual



## Summary and Outlook

- Presented invariant mass distributions for strange particles $\left(K^{0}{ }_{\mathbf{S}}, \mathbf{\Lambda}\right)$.
- Efficiency study is ongoing.
- Working on corrected spectra to obtain $\mathbf{d N} / \mathbf{d y},<p_{T}>$ and nuclear modification factor.


## References:

[1] Adamczyk L et al. 2014 Phys. Rev. Lett. 112162301
[2] STAR, J. Adam et al. 2020 Phys. Rev. C 102034909

Event Cuts

- $198<V_{Z}<202 \mathrm{~cm}$


## Supported in part by the

## Track Cuts

- nHits > 15
- nHitsFit/nHitsPoss > 0.52

