Università di Catania

Prospects for light (anti)nuclei measurements in jets in Run 3 with ALICE

marika.rasa@cern.ch

Motivation

- Baryon coalescence^[1] \rightarrow phenomenological model that describes the formation of bound states
- State-of-the-art implementations describe this formation as the overlap between the phase-space distribution of point-like nucleons and the Wigner density of the bound state^[2]
- Coalescence parameter B_{A} proportional to the coalescence probability
- To constrain the coalescence model, the production of (anti)nuclei is studied in regions where the nucleons are close, using a novel technique

In-jet and underlying event

- Leading particle (highest p_T and $p_T > 5 \text{ GeV/}c$) used as a proxy for the jet axis
- Transverse plane divided in three azimuthal regions with respect to the leading track (CDF technique)
- Transverse region dominated by the Underlying Event (UE)
- Jet = Toward (jet + UE)- Transverse (UE)

Experimental results in pp and p-Pb systems

 $(2\pi)p_{\mathrm{T}}^{\mathrm{A}}\left(\mathrm{d}y\overline{\mathrm{d}p_{\mathrm{T}}}\right)_{\mathrm{A}}$

- Striking gap between B_2^{jet} and $B_2^{\text{UE}} \rightarrow$ compatible with the coalescence picture
- Larger gap in p—Pb with respect to pp collisions^[3]
- Statistical uncertainties dominate over the systematic ones in jet and at low $p_{\rm T}$
- More measurements are needed to constraint these observations:
 - Hadron chemistry in jet
 - Full reconstruction of jets with jet-finder algorithms
 - Multi-differential studies vs p_T , jet radius and multiplicity

The ALICE detector in Run 3

- Detector upgrade during the Long Shutdown 2
- ITS, 7 layers of silicon pixel detectors with lower material budget^[4] \rightarrow better performance for the tracker
- TPC: MWPC replaced with GEMs and continuous dataflow^[5] → more events recorded with respect to Run 2
- Target integrated luminosity at the end of Run 3 for pp collisions: 200 pb⁻¹ [6]

Prospects for Run 3 measurements

- The measured p_T spectra [3][7] are parametrized and used as inputs for the simulation
- Assumed same efficiency and $\sigma_{\text{inel}}^{[8]}$ of Run 2
- Promising results, multi-differential measurements (e.g. vs multiplicity in the transverse region) could be performed
- Improvement of the statistical uncertainties of a factor 4 for B_2 jet and a factor 3 for B_2 ^{UE}

References

- [1] S. T. Butler et al., Phys. Rv. 129 (1963) 836 [5] JINST 16 (2021) P03022
- [6] ALICE-PUBLIC-2020-005 [2] M. Mahlein et al., arXiv:2302.12696
- [3] Phys. Rev. Lett. 131 (2023) 042301
- [4] NIM 1032 (2022) 166632
- [7] JHEP 06 (2023) 027
- [8] LHCb Collaboration, JHEP 06 (2018) 100