

# Applying the multiplicity-dependent Momentum Kick Model to the pp collisions at $\sqrt{s}=13$ TeV at the LHC

Jeongseok Yoon and Jin-Hee Yoon Department of Physics, Inha University, Incheon, Republic of Korea



## Motivation

• Ridge structure in long-range ( $|\Delta\eta| > 2$ ) at near-side ( $\Delta\phi \sim 0$ )

1 Heavy-Ion collisions

Believed by the hydrodynamic flow effect of QGP

② Small systems

> Insufficient to generate QGP



## Momentum Kick Model (MKM)

• **Kinematic process** explains the ridge structure



Formalism



→ parameterize

 $= \left[ \mathbf{P}_i \left( p_{T_i}, \Delta y_i, \Delta \phi_i \right) \times L \right]_{\mathbf{p}_i = \mathbf{p}_f - \mathbf{q}} \times J(\Delta y \to \Delta \eta)$ 

L: Lorentz invariant ensuring factor q: Average momentum transfer J: Jacobian

 $ig|oldsymbol{Y}_{\mathrm{assoc}}\left(p_{T_f},\Delta\eta_f,\Delta\phi_f
ight)$  $= \frac{2}{3} \times f_R \times \langle N_k \rangle \times \boldsymbol{P}_f \left( p_{T_f}, \Delta \eta_f, \Delta \phi_f \right)$ 

 $f_R$ : Survival factor reaching the detector  $\langle N_k \rangle$ : The average number of kicked-partons

# Multiplicity dependence

Motivation

Ridge yield in small systems: Low  $N_{\rm ch}$  vs. high  $N_{\rm ch}$ 



Formalism

T(x): Thickness function







*P*<sub>iet</sub>: Jet production probability

 $\sigma_{\rm MP}$ : Jet-Parton cross-section

 $f_{\text{att}}$ : Jet attenuation factor

# Application

- Averaged over  $2 < |\Delta \eta| < 4$
- ZYAM procedure (zero-yield-at-minimum)
- ✓ Least square fitting method
- ① q = 1.2 GeV/c
- ②  $f_R$  increases with  $p_T$





- **Questions** raised by CMS Collaboration
  - 1. Ridge yield reaches a maximum around  $p_T \approx 1 \text{ GeV/c}$ 
    - $\triangleright$  **MKMwM**: The *q* is active at  $p_T = 1.2$  GeV/c
  - 2. Ridge yield shows a linear increase with  $N_{\rm ch}$  $\triangleright$  **MKMwM**: This linearity is attributed to  $\langle N_k \rangle$

# **Parameters**

|                                                                                                                                                                               | Physical parameters |                                                                      | STAR(a) & PHENIX(b)                  | CMS                                      |                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------|--------------------------------------|------------------------------------------|-----------------------------|
|                                                                                                                                                                               |                     |                                                                      | AuAu at $\sqrt{s} = 0.2 \text{ TeV}$ | $pp$ at $\sqrt{s} = 7 \text{ TeV}^{(c)}$ | $pp$ at $\sqrt{s} = 13$ TeV |
| MKM                                                                                                                                                                           | q                   | average momentum transfer                                            | 1.0 & 0.8 GeV/c                      | 2.0 GeV/c                                | 1.2 GeV/c                   |
|                                                                                                                                                                               | $f_R$               | survival factor                                                      | -                                    | 1.00                                     | 0.38 ~ 1.30                 |
|                                                                                                                                                                               | T                   | medium temperature                                                   | 0.50 GeV                             | 0.70 GeV                                 | 0.77 GeV                    |
|                                                                                                                                                                               | $m_d$               | mass parameter                                                       | 1.0 GeV                              |                                          | 1.0 GeV                     |
|                                                                                                                                                                               | a                   | fall-off parameter                                                   | 0.5                                  |                                          | 0.5                         |
| Multiplicity dependence                                                                                                                                                       | R                   | proton radius                                                        | _                                    | 0.80 fm                                  | 0.74 fm                     |
|                                                                                                                                                                               | $t_0$               | initial time                                                         | 0.60 fm/c                            | 0.43 fm/c                                | 0.39 fm/c                   |
|                                                                                                                                                                               | $\kappa'$           | $\frac{\langle N_{\rm MP} \rangle}{\langle N_{\rm particp} \rangle}$ | 21                                   | 367                                      | 134                         |
|                                                                                                                                                                               | $\sigma_{MP}$       | cross-section btw jet & parton                                       | 1.4 mb                               |                                          | 1.4 mb                      |
|                                                                                                                                                                               | ζ                   | empirical attenuation coefficient                                    | 0.2                                  |                                          | 0.2                         |
| (a): C. Y. Wong, Phys. Rev. C <b>78</b> , 064905 (2008)<br>(b): C. Y. Wong, Phys. Rev. C <b>80</b> , 034908 (2009)<br>(c): C. Y. Wong, Phys. Rev. C <b>84</b> , 024901 (2011) |                     |                                                                      |                                      |                                          |                             |

## Prediction

#### Motivation

- CMS compared the yield at  $\sqrt{s} = 13$  TeV with 7 TeV for pp collisions
  - $\triangleright$  CMS:  $\triangle Y \approx \text{same} \rightarrow \text{no clear } \sqrt{s} \text{ dependence}$
  - > MKMwM: Prediction by fixing q = 1.2 GeV/c from  $\sqrt{s} = 13$  TeV plus, confirmed q = 1.1 GeV/c at  $\sqrt{s} = 7 \text{ TeV}$

#### Results

• Upcoming LHC Run 3

Using the same





### **Conclusions & Discussions**

- MKMwM at  $\sqrt{s} = 13$  TeV successfully explains the long-range near-side ridge structure through recent data-driven parameters.
- Prediction using the same  $f_R$  &  $\Delta\Phi_{\text{ZYAM}}$  values from  $\sqrt{s} = 13$  TeV may result in some uncertainties.
- Feasibility of the MKMwM in heavy-ion collisions needs to be further investigated.