Flash talk in Quark Matter 2023, Houston, Texas

Dynamics of causal hydrodynamic fluctuations in an expanding system

Shin-ei Fujii, Tetsufumi Hirano Sophia Univ.

Introduction

QGP created in the HIC is successfully described by

"Relativistic Viscous Hydrodynamics"

Fluctuation Dissipation Relation (FDR)

Dissipation (viscosity) and fluctuations are always accompanied.

Ex.) FDR for shear stress tensor

$$\left\langle \xi_{\pi}^{\mu\nu}(x)\xi_{\pi}^{\alpha\beta}(x')\right\rangle = 4\eta T\delta^{4}(x-x')\Delta^{\mu\nu\alpha\beta}$$
$$\xi_{\pi}^{\mu\nu}: \text{fluctuation } \eta: \text{viscosity}$$

Purpose

To see the effect of hydrodynamic fluctuations on observables

Formalism

Perturbative expansion around the Bjorken's solution

$$u_{\rm Bi}^{\mu}=(\cosh\eta_{\rm S},0,0,\sinh\eta_{\rm S})$$
 $\eta_{\rm S}=\frac{1}{2}\ln\left(\frac{t+z}{t-z}\right)$: coordinate rapidity

Small deviations

$$u^{\mu} \rightarrow \left(\cosh\left(\eta_{s} + \delta y(\tau, \eta_{s})\right), 0, 0, \sinh\left(\eta_{s} + \delta y(\tau, \eta_{s})\right)\right)$$

$$e \rightarrow e_0(\tau) + \delta e(\tau, \eta_s)$$
 etc. e : energy density $\tau = \sqrt{t^2 - z^2}$: prof

$$\tau = \sqrt{t^2 - z^2}$$
: proper time

Energy-momentum conservation

Background
$$\frac{d}{d\tau}e_0 + \frac{1}{\tau}(w_0 + \Pi_0 - \pi_0) = 0$$
 (Bjorken equation)

Fluctuation
$$\frac{\partial}{\partial \tau} \left(\frac{\delta e}{\delta y(w_0 + \Pi_0 - \pi_0)} \right) + \frac{1}{\tau} \frac{\partial}{\partial \eta_s} \left(\frac{\delta y(w_0 + \Pi_0 - \pi_0)}{\delta p + \delta \Pi - \delta \pi} \right) + \frac{1}{\tau} \left(\frac{\delta w + \delta \Pi - \delta \pi}{2\delta y(w_0 + \Pi_0 - \pi_0)} \right) = 0$$

w=e+p: enthalpy density p: hydrostatic pressure $\pi\equiv\pi^{00}-\pi^{33}$: shear stress Π : bulk pressure

W. Israel and J. M. Stewart, Annals Phys. **118**, 341 (1979)

Formalism

Perturbative expansion arg

 $u_{\text{Bi}}^{\mu} = (\cosh \eta_s, 0, 0, \sinh \eta_s)$

Small deviations

$$u^{\mu} \rightarrow \left(\cosh\left(\eta_{s} + \delta y(\tau, \eta_{s})\right), 0, 0, \right)$$

$$e \rightarrow e_0(\tau) + \delta e(\tau, \eta_s)$$
 etc.

Energy-momentum co

Causal constitutive equations + noise

Background

$$\left(1 + \tau_{\pi 0} \frac{d}{d\tau}\right) \pi_0 = \frac{4\eta_0}{3\tau}$$

 η : shear viscosity

 τ_{π} : relaxation time

noise term

Fluctuation

$$\left(1 + \tau_{\pi 0} \frac{\partial}{\partial \tau}\right) \delta \pi = -\frac{\delta \tau_{\pi}}{\tau_{\pi 0}} \left(\frac{4\eta_{0}}{3\tau} - \pi_{0}\right) + \frac{4\eta_{0}}{3\tau} \frac{\partial}{\partial \eta_{s}} \delta y + \frac{4\delta \eta}{3\tau} + \xi_{\pi}$$

Background
$$\frac{d}{d\tau}e_0 + \frac{1}{\tau}(w_0 + \Pi_0 - \pi_0) = 0 \quad \text{(Bjork)}$$
 ation)

Fluctuation
$$\frac{\partial}{\partial \tau} \left(\frac{\delta e}{\delta y(w_0 + \Pi_0 - \pi_0)} \right) + \frac{1}{\tau} \frac{\partial}{\partial \eta_s} \left(\frac{\delta y(w_0 + \Pi_0 - \pi_0)}{\delta p + \delta \Pi - \delta \pi} \right) + \frac{1}{\tau} \left(\frac{\delta w + \delta \Pi - \delta \pi}{2\delta y(w_0 + \Pi_0 - \pi_0)} \right) = 0$$

w=e+p: enthalpy density p: hydrostatic pressure $\pi\equiv\pi^{00}-\pi^{33}$: shear stress Π : bulk pressure

Space-time evolution of energy density

Initial conditions: $e_0(\tau=1~\mathrm{fm})=10~\mathrm{GeV/fm^3}$, $\delta e(\tau=1~\mathrm{fm})=0~\mathrm{GeV/fm^3}$, $\pi_0(\tau=1~\mathrm{fm})=\frac{4\eta}{3\tau}~\mathrm{GeV/fm^3}$

Distribution is frozen

Carry the information of early stage

2 particle correlations

Y_1 : rapidity of particle 1 Y_2 : rapidity of particle 2

Mass dependence

Heavier hadrons are good probes of correlations

2 particle correlations

 Y_1 : rapidity of particle 1

 Y_2 : rapidity of particle 2

Mass dependence

1.01

Correlations include information of EoS

2 particle correlations

Shear viscosity dependence

 Y_1 : rapidity of particle 1 Y_2 : rapidity of particle 2

Viscosity → **Enhance**

2 particle correlations

 Y_1 : rapidity of particle 1 Y_2 : rapidity of particle 2

Shear viscosity dependence

Relaxation time dependence

Viscosity → **Enhance**

Relaxation time → **Suppress**

2 particle correlations

 Y_1 : rapidity of particle 1

 Y_2 : rapidity of particle 2

Shear viscosity dependence

Relaxation time dependence

Summary

New framework of causal hydrodynamic fluctuations in (1+1)D system

Hydrodynamic fluctuations provide a multidimensional analysis