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Introduction and motivation

▶ The jet substructure studies allow to test fundamental properties of QCD.

▶ Our ultimate goal is to use jet substructure to achieve improved understanding of hadronization and jet quenching in AA collisions.

▶ In order to understand jet substructure in AA collisions we need to make sure that we understand the pp case. Therefore, we need
high accuracy level theoretical predictions (beyond one-loop level) for various jet substructure observables.

▶ Due to complexity of calculations beyond one-loop accuracy level one needs a framework which allows to automate analytical
computations.

▶ At LHC jet substructure was intensively studied however just a few measurements are available at RHIC [1].

▶ What is the difference between LHC and RHIC physics and how it will affect the jet substructure?

▶ We aim to use our available high accuracy level LHC results to make reliable phenomenological predictions for future RHIC
measurements.

Observable definition and grooming technique

Observable definition:

▶ Jet angularity is defined as λκ
α =

∑
i∈jet

(
pt ,i

pt ,jet

)κ (∆Rij
R

)α
, α > 0 κ > 0.

▶ Angular decorrelation is defined as an azimuthal angle between
two jets δφ.

▶ For the LHC measurements of λ1
1/ 2, λ1

1 and λ1
2 see [2].

▶ The NLO +NLL′ [3, 4] and NNLL [5] accuracy level theoretical
predictions are available for λ1

α and δφ correspondingly.

▶ The results of [3, 4] are available as the CAESAR resummation
plugin to SHERPA MC generator [6].

SoftDrop groomer:

▶ Allows to remove “contamination” from soft wide-angle
emissions, hence reduces a non-perturbative contribution.

▶ Decluster jet into two subjets i and j.

▶ Check if SoftDrop condition
min(pti ,ptj)

pti+ptj
> zcut

(
∆Rij
R

)β
holds.

▶ If SoftDrop condition is satisfied do nothing.

▶ Otherwise discard the softest branch and repeat the whole
procedure.

Figure 1: Schematic picture of the leading jet after declustering.

Parton-to-hadron level transition leads to bin migration and needs to be addressed carefully!
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Figure 2: Left: Transfer matrix T (λ1,HL

1 |λ1,PL
1 ) for λ1

1 for central dijet events with R = 0.8 and pT ,jet ∈ [120, 150] GeV,
√

S = 13TeV, pp collisions. Right: Migration
flow between different pT -bins. From [4].

Perturbative results must be “unfolded” (corrected for parton-to-hadron level transition)!
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Figure 3: Comparison of the resummed predictions [3, 4] against CMS data [2] for ungroomed (left) and groomed (right) λ1
1/ 2, pT ,jet ∈ [120, 150] GeV,

√
S = 13TeV,

pp collisions. Red band correspond to “naive” correction of perturbative results for non-perturbative effects without bin-migration. Magenta band correspond to
transfer matrix approach taking bin-migration into account.

Jet angularities λ1
α =
∑

i zi
(
∆i,jet / R

)α
at RHIC collision energy, SHERPA Res. + MC
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Figure 4: Left: comparison between LO+NLL′ predictions, LO and NLO MC simulations (CEASAR and SHERPA). Matching to fixed order results and higher
order corrections change cross section but do not affect shape of λα. Right: Impact of non-perturbative effects. In collaboration with D. Reichelt and S. Schumann
(preliminary).

Hadronization and Lund string model
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Figure 5: Impact of variation of the Lund String parameters in PYTHIA8 on the
shape of jet angularity λ1

1 (preliminary).

New tunes?

▶ There is a Detroit PYTHIA tune [7] designed to describe
RHIC data, but it mostly affect multiple partonic
interactions (MPIs).

▶ However, MPIs are almost absent at RHIC energies
because

√
S is too small.

▶ Lund symmetric fragmentation function is given by

f(z) ∼
(1 − z)a

z
exp
(
−bm2/ z

)
.

▶ Hadron formation time
⟨τ2
⟩ =

1 + a
bκ2 ≈ 2 fm.

▶ At LHC jet angularities can be used to tune MPI
models [4].

▶ At RHIC one can use jet angularities to tune
hadronization models and, in perspective, to improve our
understanding of hadronization.

▶ Reliable perturbative and non-perturbative predictions
for jets produced in pp collisions are needed (to be used
as a baseline in comparison against AA results).

Is δφ affected by NP-corrections?
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Figure 6: Left: Impact of hadronization and MPIs on δφ, comparison between PYTHIA8, HERWIG7 and SHERPA2 pp collisions. Right: Impact of hadronization
and MPIs on δφ, comparison between PYTHIA8, HERWIG7 and Q-PYTHIA and JEWEL, pp collisions (preliminary).

How δφ is affected by medium effects?
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Figure 7: Impact of the medium interactions on δφ distribution. Left: JEWEL MC with 0.2 GeV initial medium temperature. Right: JEWEL MC with 0.3 GeV initial
medium temperature (preliminary).

Conclusions and next steps

▶ Resummed predictions for both groomed and ungroomed angularities λ1
α (α ∈ [1/ 2, 1, 2]) at LO +NLL′ are ready, the NLO +NLL′

prediction require some more CPU time.

▶ We found that angularities λ1
α at RHIC energies can be used to study hadronization and produce new MC tunes.

▶ On the other hand, angular decorrelation δφ is less sensitive to hadronization and hence can be used to test various parton shower
models.

▶ The JEWEL and Q-PYTHIA MC event generators predictions strongly differ from standard LHC MC event generators applied to
RHIC setup.

▶ The δφ distributions simulated with JEWEL MC generator show strong dependence on the medium temperature.

▶ The resummed predictions must be corrected for non-perturbative effects using corresponding parton-to-hadron transition matrices.

▶ The deeper understanding of the source of the differences between Q-PYTHIA, JEWEL and LHC MC is required.

▶ Will Q-Pythia, JEWEL and Jetscape MC simulations agree / disagree with each other?

▶ The new RHIC measurements are needed!
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