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Introduction and motivation Hadronization and Lund string model

» The jet substructure studies allow to test fundamental properties of QCD.
- - - - - Tl | ing i isi New tunes?
» Our ultimate goal is to use jet substructure to achieve improved understanding of hadronization and jet quenching in AA collisions. PYTHIAS aLund = 0.68, aveZLund — 0.55 _

» In order to understand jet substructure in AA collisions we need to make sure that we understand the pp case. Therefore, we need PYTHIAS aLund = 0.34, avgZLund = 0.30 » There is a Detroit PYTHIA tune [7] designed to describe
high accuracy level theoretical predictions (beyond one-loop level) for various jet substructure observables. | PYTHIAS aLund = 0.36, avgZLund = 0.70 RHIC data, but it mostly affect multiple partonic

interactions (MPls).

» Due to complexity of calculations beyond one-loop accuracy level one needs a framework which allows to automate analytical
computations.

pp — 37
Pri~ > 40GeV, |nj4| <1,

R =04, /s =200GeV

» However, MPIs are almost absent at RHIC energies
because VS is too small.

» Lund symmetric fragmentation function is given by

» At LHC jet substructure was intensively studied however just a few measurements are available at RHIC [1].
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» What is the difference between LHC and RHIC physics and how it will affect the jet substructure?

f(z)~ U _zz)a exp (~bm?/2).

» We aim to use our available high accuracy level LHC results to make reliable phenomenological predictions for future RHIC
measurements.

» Hadron formation time

(2 = 1b:23 ~ 2fm,

(1/0) do/dlogy Al

» At LHC jet angularities can be used to tune MPI
models [4].

Ob ble definition: ] » At RHIC one can use jet angularities to tune
SR | hadronization models and, in perspective, to improve our

understanding of hadronization.
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» Jet angularity is defined as A; = ie?’et(pt’jet) ( =], a>0 x>0. - — 1 » Reliable perturbative and non-perturbative predictions
- . | LEADING JET \ 3211 _ 10g10 )\1 for jets produced in pp collisions are needed (to be used
» Angular decorrelation is defined as an azimuthal angle between as a baseline in comparison against AA results).

two jets 9. Figure 5: Impact of variation of the Lund String parameters in PYTHIA8 on the
’ ’ ’ shape of jet angularity A} (preliminary).
» For the LHC measurements of /11/2, Ay and A, see [2].

» The NLO + NLL' [3, 4] and NNLL [5] accuracy level theoretical
predictions are available for A} and d, correspondingly. Is 6¢ affected by NP-corrections?

» The results of [3, 4] are available as the CAESAR resummation
plugin to SHERPA MC generator [6]. " PARTON LEVEL vs. HHADRON LEVEL HADRON LEVEL

‘\—\m’ . HARD INTERACTION PYTHIAS PS pp — i I
oo e —— HERWIG7 STD VACUUM
ELECTROWEAK BOSON HERWIGT HAD pp — jv .
—— Q—PYTHIA STD VACUUM

— JEWEL STD VACUUM

Observable definition and grooming technique
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» Allows to remove “contamination” from soft wide-angle . .
.. . . . . SHERPA2 PS pp — jv [ 40 GeV ‘77 | <1
emissions, hence reduces a non-perturbative contribution. - SHERPA2 HAD pp — i~ R,m 04 3 ’206723 v ,
= 0.4, /s = e

HADRONIC DECAY

» Decluster jet into two subjets i and j.

- -

. .. min(py.ps) AR:\B
» Check if SoftDrop condition T’Z)Ut’ > Zeut (TU) holds. . = 120

pr; > 30GeV, |n;| <1,
R = 0.4, /5 = 200 GoV

» If SoftDrop condition is satisfied do nothing. : <10.0

» Otherwise discard the softest branch and repeat the whole CUBLEADING T 8.0
procedure_ SUBLEADING JET . 6.0

(1/0) do /dd, (1/rad)

Figure 1: Schematic picture of the leading jet after declustering. _ 4.0
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Figure 6: Left: Impact of hadronization and MPIs on d¢, comparison between PYTHIA8, HERWIG7 and SHERPA2 pp collisions. Right: Impact of hadronization
and MPIs on d¢, comparison between PYTHIA8, HERWIG7 and Q-PYTHIA and JEWEL, pp collisions (preliminary).
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How 0@ is affected by medium effects?
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Figure 2: Left: Transfer matrix T(A}’HLIA}PL) for )I] for central dijet events with R = 0.8 and pr et € [120, 150] GeV, VS = 13TeV, pp collisions. Right: Migration
flow between different pr-bins. From [4].

| JEWEL _  JEWEL
Centrality 0—20, ' Centrality 0—20,
TI = 0.2 GeV o TI=0.3 GeV

Perturbative results must be “unfolded” (corrected for parton-to-hadron level transition)!

pr.ie € [120,150] GeV pTjer € [120,150] GeV Py > 30GeV, | < 1,
—— NLO + NLL' + NP (jug, jir, 1, Oxp) = NLO + NLL' + NP (ug, pr, xr, Oxp) ) R — 04, \/g = 200 Gev
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Figure 7: Impact of the medium interactions on J,, distribution. Left: JEWEL MC with 0.2 GeV initial medium temperature. Right: JEWEL MC with 0.3 GeV initial
medium temperature (preliminary).
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Conclusions and next steps

» Resummed predictions for both groomed and ungroomed angularities A} (a € [1/2, 1,2]) at LO + NLL’ are ready, the NLO + NLL’
prediction require some more CPU time.

» We found that angularities A} at RHIC energies can be used to study hadronization and produce new MC tunes.

Theory / Data
S = = NN
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» On the other hand, angular decorrelation d,, is less sensitive to hadronization and hence can be used to test various parton shower
models.

» The JEWEL and Q-PYTHIA MC event generators predictions strongly differ from standard LHC MC event generators applied to
RHIC setup.

Fi : [ fth icti 4 [ M 2] f lef ight) A : 120, 1 V = 13T o : : : :
igure 3: Comparison of the resummed predictions [3, 4] against CMS data [2] for ungroomed (left) and groomed (right) { . P jet € [120,150] GeV, VS = 13TeV, » The §,, distributions simulated with JEWEL MC generator show strong dependence on the medium temperature.

pp collisions. Red band correspond to “naive” correction of perturbative results for non-perturbative effects without bin-migration. Magenta band correspond to
transfer matrix approach taking bin-migration into account. » The resummed predictions must be corrected for non-perturbative effects using corresponding parton-to-hadron transition matrices.

» The deeper understanding of the source of the differences between Q-PYTHIA, JEWEL and LHC MC is required.
» Will Q-Pythia, JEWEL and Jetscape MC simulations agree / disagree with each other?

» The new RHIC measurements are needed!
RHIC PARTNON LEVEL RHIC PARTNON VS. HADRON LEVEL
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OLO+NLL = 37.85 pb
ONLL — 16.41 pb
ONLO — 39.25 pb
oo =20.33pb
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» The results from Refs. [3, 4] were obtained in collaboration with S. Caletti, S. Marzani, D. Reichelt, S.
Schumann, G, Soyez and Vincent Theeuwes.
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