Quark Matter 2023

Contribution ID: 769 Type: Poster

A modular perspective to the jet quenching from a small to large radius in very high transverse momentum jets

Tuesday 5 September 2023 17:30 (2h 10m)

In this contribution, we extend the scope of the JETSCAPE framework to cover the jet radius (R) dependence of the jet nuclear modification factor, R_{AA} , for broader area jet cones, going all the way up to R=1.0. The primary focus of this work has been the in-depth analysis of the high- p_T inclusive jets and the quenching effects observed in the quark-gluon plasma formed in the Pb-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV for the most-central (0-10%) collisions. The nuclear modification factor is calculated for inclusive jets to compare with the experimental data from the ATLAS and CMS detectors in the jet transverse momentum (p_T) ranging from 100 GeV up to 1 TeV. The results predicted by the JETSCAPE are consistent in the high p_T range as well as for extreme jet cone sizes within 10-20\%. We also calculate the double ratio $(R_{\rm AA}^{\rm R}/R_{\rm AA}^{\rm R=small})$ as a function of jet radius and jet- p_T , where the observations are well described by the JETSCAPE framework which is based on the hydrodynamic multi-stage evolution of the parton shower. The calculations are then performed for low-virtuality-based evolution models like the MARTINI and the AdS/CFT, followed by a rigorous comparison between the former model's predictions and the CMS experiment's measurements.

Category

Theory

Collaboration (if applicable)

Past member of ATLAS and ALICE collaborations

Primary author: PALNI, Prabhakar (IIT Mandi)

Co-authors: SHAHI, Om (BITS PILANI K K BIRLA GOA CAMPUS); DESAI, Vaishnavi (Goa University)

Presenter: PALNI, Prabhakar (IIT Mandi) **Session Classification:** Poster Session

Track Classification: Jets