

Jet quenching parameter \hat{q} during initial stages

Kirill Boguslavski¹, Aleksi Kurkela², Tuomas Lappi^{3,4}, **Florian Lindenbauer**¹, Jarkko Peuron^{3,4} ¹Institute for Theoretical Physics, Technische Universität Wien, 1040 Vienna, Austria ²Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway ³Department of Physics, University of Jyväskylä, P.O. Box 35, 40014 University of Jyväskylä, Finland ⁴Helsinki Institute of Physics, P.O. Box 64, 00014 University of Helsinki, Finland

based on arXiv:2303.12595 [hep-ph]

Motivation

- Study properties of the strong interaction = Quantum Chromodynamics (QCD)
- Quark-Gluon Plasma (QGP) generated in heavy-ion collisions at LHC or RHIC
- Several stages in time evolution of QGP (see figure below)
- Study early stages using jets. They originate from initial hard scattering and probe all stages of the plasma evolution
- Jet-medium interaction characterized by the jet quenching parameter

$$\hat{q} = \frac{\mathrm{d}\langle p_{\perp}^2 \rangle}{\mathrm{d}L} = \int \mathrm{d}^2 q_{\perp} \, q_{\perp}^2 \frac{\mathrm{d}\Gamma^{\mathrm{el}}}{\mathrm{d}^2 q_{\perp}}.\tag{1}$$

- Quantifies momentum broadening
- ullet Mostly discussed in thermal (or hydrodynamic) medium ightarrowlook at \hat{q} at early stages within kinetic theory
- Glasma simulations and calculations point to large value of \hat{q} during the Glasma stage [2,3]
- No calculation/simulation between Glasma and hydrodynamic stage exists
- Here: Medium described by kinetic theory, \hat{q} from elastic scattering rate (as calculated from Eq. (1,2))
- ullet Use 't Hooft coupling $\lambda=g^2N_C=4\pi N_C lpha_S$

Jet quenching

Scattering process and formula

Medium: Kinetic theory

- Quasi-particles with distribution function $f(t, \vec{p})$
- Time evolution described by **Boltzmann equation** [4]

$$(\partial_t + \vec{v} \cdot \vec{\nabla})f = \underbrace{\left| \frac{2}{1 + 1 + 1} \right|^2}_{\text{Collision term}}$$

- Assume: Expanding system, mid-rapidity, homogeneous in x-y with cylindrical symmetry (around beam axis \hat{z}).
- We solve the Boltzmann equation numerically for a purely gluonic system (dominant degrees of freedom for thermalization)
- Initial condition [5]

$$f(p_{\perp}, p_z) = \frac{2A}{\lambda} \frac{\langle p_T \rangle}{\sqrt{p_{\perp}^2 + \xi^2 p_z^2}} \times e^{-\frac{2}{3\langle p_T \rangle^2} \left(p_{\perp}^2 + \xi^2 p_z^2\right)}$$

 $|\xi|\sim$ anisotropy, $\langle p_T
angle=1.8\,Q_{s}$, $|Q_S|\sim$ saturation scale

- Markers ★ ▼ represent different stages of bottomup (arrows in figure)
- ullet Characteristic thermalization time scale $au_{
 m BMSS} = lpha_s^{-13/5}/Q_s$

Comparison with Glasma

- Weak dependence on initial anisotropy ξ and cutoff models
- Bands: Different initial conditions (anisotropy ξ) and cutoff models (see below)
- Little jet energy dependence
- Connects large values from Glasma (curve from Ref. [2]) and lower values in hydrodynamic stage
- We extract \hat{q} as medium parameter relevant for a jet with a specific energy

ullet Temperature via Landau matching, $arepsilon^{
m eq}(T_{arepsilon})=arepsilon^{
m simulation}$

$$T_{\varepsilon}(\tau) = \left(\frac{30\,\varepsilon(\tau)}{\pi^2 \times \#\text{d.o.f.}}\right)^{1/4}$$

Temperature of equilibrium system with same energy den-

- ullet Parameter \hat{q} depends on cutoff $q_{\perp} < \Lambda_{\perp}$, use **different** cutoff models:
 - LPM cutoff $\Lambda_+^{
 m LPM}(E,T)=\zeta^{
 m LPM}g imes(ET^3)^{1/4}$
 - kinematic cutoff $\Lambda_+^{\rm kin}(E,T)=\zeta^{\rm kin}g\times(ET)^{1/2}$

Typical momentum transfer $Q_{\perp}^2 \sim \hat{q} t^{
m form}$, formation time $t^{
m form} \sim 1$ $\sqrt{\omega/\hat{q}}$, estimate $\hat{q}\sim g^4T^3$ (assume dominated by $\omega\sim E_{
m jet}$).

- Fix ζ^{i} at triangle marker to match with JETSCAPE [6] (LBT parametrization) for $\lambda=10$ and $Q_{\scriptscriptstyle S}=1.4\,{\sf GeV}$
- Numerically: Interpolate in large cutoff region $\hat{q}^{yy}(\Lambda_{\perp} \gg$ $T_{arepsilon} \simeq a_y \ln \Lambda_{\perp}/Q_s + b_y$ (similar with z)

Conclusions

- We obtain consistent evolution of \hat{q} between Glasma and hydrodynamic phases
- Little dependence on jet energy and initial conditions
- Momentum broadening along beam axis enhanced ightarrow mostly $\hat{q}^{zz} > \hat{q}^{yy}
 ightarrow$ anisotropic broadening
- Anisotropic $\hat{q}^{yy} \neq \hat{q}^{zz} \rightarrow \text{Jet polarisation [7]}$
- ullet Similar results for heavy-quark diffusion coefficient κ (see talk by J. Peuron [8])

Outlook

- Different jet momenta, angles and screening prescriptions
- ullet Parameter \hat{q} enters energy loss calculations in BDMPS-Z formalism with harmonic approximation ightarrow include our value of \hat{q} in jet quenching models
- Study impact of pre-equilibrium medium via \hat{q}

Contact

Florian Lindenbauer Institute for Theoretical Physics TU Wien florian.lindenbauer@tuwien.ac.at

[1] arXiv:2303.12595 [Boguslavski, Kurkela, Lappi, Lindenbauer, Peuron]

[2] Phys.Lett.B 810 (2020) [lpp, Müller, Schuh]

[3] Phys.Rev.C 105 (2022) [Carrington et al.], Phys.Rev. D 107 (2023) [Avramescu et al.]

[4] JHEP 01 (2003) [Arnold, Moore, Yaffe], Int.J.Mod.Phys.E 16 (2007) [Arnold]

[5] Phys.Rev.Lett. 115 (2015) [Kurkela, Zhu] [6] Phys.Rev.C 104 (2021) [JETSCAPE]

[7] arXiv:2303.03914 [Hauksson, lancu]

[8] arXiv:2303.12520 [Boguslavski, Kurkela, Lappi, Lindenbauer, Peuron]

