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• Study properties of the strong interaction = Quantum Chro-
modynamics (QCD)

• Quark-Gluon Plasma (QGP) generated in heavy-ion
collisions at LHC or RHIC

• Several stages in time evolution of QGP (see figure below)

• Study early stages using jets. They originate from initial
hard scattering and probe all stages of the plasma evolution

• Jet-medium interaction characterized by the jet quench-
ing parameter
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• Quantifies momentum broadening

• Mostly discussed in thermal (or hydrodynamic) medium →
look at q̂ at early stages within kinetic theory

• Glasma simulations and calculations point to large value of
q̂ during the Glasma stage [2,3]

• No calculation/simulation between Glasma and hydrody-
namic stage exists

• Here: Medium described by kinetic theory, q̂ from
elastic scattering rate (as calculated from Eq. (1,2))

• Use ’t Hooft coupling λ = g2NC = 4πNCαs

Medium: Kinetic theory

• Quasi-particles with distribution function f (t, ~p)

• Time evolution described by Boltzmann equation [4]

• Assume: Expanding system, mid-rapidity, homogeneous in
x− y with cylindrical symmetry (around beam axis ẑ)

• We solve the Boltzmann equation numerically for a purely
gluonic system (dominant degrees of freedom for
thermalization)

• Initial condition [5]
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ξ ∼ anisotropy, 〈pT 〉 = 1.8Qs, Qs ∼ saturation scale

Collision term
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Scattering process and formula

Anisotropic definition

q̂ij =

∫
q⊥<Λ⊥
p→∞

dΓPS q
iqj |M|2 f (~k)(1 + f (~k′)) (2)

leads to usual q̂ = q̂yy + q̂zz
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Time evolution of a purely gluonic plasma
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• Markers represent different stages of bottom-
up (arrows in figure)

• Characteristic thermalization time scale τBMSS = α
−13/5
s /Qs

Conclusions

• We obtain consistent evolution of q̂ between Glasma
and hydrodynamic phases

• Little dependence on jet energy and initial conditions

• Momentum broadening along beam axis enhanced
→ mostly q̂zz > q̂yy → anisotropic broadening

• Anisotropic q̂yy 6= q̂zz → Jet polarisation [7]

• Similar results for heavy-quark diffusion coefficient κ
(see talk by J. Peuron [8])

Outlook

• Different jet momenta, angles and screening prescriptions

• Parameter q̂ enters energy loss calculations in BDMPS-Z
formalism with harmonic approximation
→ include our value of q̂ in jet quenching models

• Study impact of pre-equilibrium medium via q̂
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Jet quenchingMotivation

• Temperature via Landau matching, εeq(Tε) = εsimulation

Tε(τ ) =

(
30 ε(τ )

π2 ×#d.o.f.

)1/4

Temperature of equilibrium system with same energy den-
sity

• Parameter q̂ depends on cutoff q⊥ < Λ⊥, use different
cutoff models:

– LPM cutoff ΛLPM
⊥ (E, T ) = ζLPMg × (ET 3)1/4

– kinematic cutoff Λkin
⊥ (E, T ) = ζking × (ET )1/2

Typical momentum transfer Q2
⊥ ∼ q̂tform, formation time tform ∼√

ω/q̂, estimate q̂ ∼ g4T 3 (assume dominated by ω ∼ Ejet)

• Fix ζi at triangle marker to match with JETSCAPE [6]
(LBT parametrization) for λ = 10 and Qs = 1.4 GeV

• Numerically: Interpolate in large cutoff region q̂yy(Λ⊥ �
Tε) ' ay ln Λ⊥/Qs + by (similar with z)

• Weak dependence on initial anisotropy ξ and cutoff
models

• Bands: Different initial conditions (anisotropy ξ) and cut-
off models (see below)

• Little jet energy dependence

• Connects large values from Glasma (curve from Ref.
[2]) and lower values in hydrodynamic stage

• We extract q̂ as medium parameter relevant for a jet
with a specific energy

Comparison with Glasma

based on arXiv:2303.12595 [hep-ph]


