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DEEP LEARNING FOR FLOW OBSERVABLES
IN ULTRARELATIVISTIC HEAVY-ION COLLISIONS

ABSTRACT
Including multi-particle flow correlations to
Bayesian analyses is challenging due to a very
high computational cost of simulating millions of
collision events. Deep neural networks can be
trained to predict final state quantities from initial
energy density EbyE. This speeds up the simulations
by orders of magnitude.

THEMODEL FRAMEWORK
• Initial state: pQCD + gluon saturation based EKRT-model

• Evolution: 2+1D second-order viscous hydrodynamics
with shear and bulk viscosities

•Decoupling: Based on applicability of hydrodynamics
=⇒ Dynamical decoupling conditions [1]:

Knudsen number

Kn ≡ exp. rate

scat. rate
= τπθ = CKn

Global size of system

γτπ
R

= CR , R =
√
A/π

where:
CKn,CR are free parameters fitted from data,
τπ = relaxation time,
θ = expansion rate,
A = area in which Kn < CKn and T < 150 MeV
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Dynamical decoupling decreases lifetime of the system com-
pared to a constant temperature decoupling in peripheral
collisions =⇒ flow is reduced

NEURAL NETWORK
We have trained a set of neural networks to emulate heavy-
ion collision simulations EbyE by taking transverse-plane
initial energy densities at mid-rapidity as an input and giv-
ing a chosen set of final state observables as an output [2].
Specifically, we use deep convolutional neural networks in
our implementation, which are state of the art in machine
vision tasks.
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TRAINING AND VALIDATION
Here the neural networks are trained to predict pT -
integrated flow observables v2,v3,v4,v5,v6, [pT ] and dNch/dη.
The training for each neural network takes around one hour
with NVIDIA V100 32GB GPU. As training data, we have
used 5k events for each collision system:
• 200 GeV Au+Au
• 2.76 TeV Pb+Pb
• 5.023 TeV Pb+Pb
• 5.44 TeV Xe+Xe (deformed nuclei)

Validation of the neural networks is done by generating 90k
independent initial energy density profiles and comparing
results between the full simulations (Hydro) and neural net-
work predictions (NN).
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•Good EbyE agreement for lower order flow coefficients
and mean transverse momentum
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• The agreement nearly exact for all event averaged flow
coefficients
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•Great agreement also for multi-particle correlations!

HIGH-STATISTICS PREDICTIONS
Generating 10 million events with the trained neural net-
works takes around 20 hours with GPU, which is five orders
of magnitude faster than doing full simulations using the
CPU.
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• Increasing statistic from 90k to 10M events is very
significant for rare flow correlators

ADDITIONAL INPUTS
To make neural networks more versatile and suitable for
Bayesian analyses, it is necessary to add all model parame-
ters as additional inputs [3].

Model parameters:
viscosities etc. 

Neural Network Flow observable, e.g. vn

The training with additional inputs uses a total of 160k
events, which are distributed evenly between 2k parameter
points. We now only use 80 training events for each param-
eter point, which is 250 times less than in the previous case
with 20k training events.
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•NNcan predict Hydro results quitewell for both viscosities

APPLICATION TO BAYESIAN ANALYSIS
Neural networks presented here are still not directly usable
to perform Bayesian analysis since it is too slow to generate
∼ 1M events in every MCMC random walk step. However,
neural networks can be used to generate training data for
a Gaussian process emulator in a fraction of the time com-
pared to conventional methods.

CONCLUSIONS
We have trained neural networks to predict flow
observables from initial energy density EbyE and
shown that they can predict the results from full
hydrodynamical simulations quite reliably. This
method can be used in the future to perform
Bayesian analyses that take into account multi-
particle flow correlations with immensely reduced
computational time.
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