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Rare Probe Anisotropies

The study of Jets, heavy flavor quarks, and other signals created in heavy-ion collisions is indispensable to the

study of QCD, and the Quark Gluon Plasma (QGP) which with they interact. The azimuthal yield of these particles

(referred to as POI, with angles ψi) around a symmetry axis Ψ′
n can be decomposed into Fourier components, v

′
n:

v′
n ≡

〈
ein

(
ψ−Ψ′

n

)〉
=
〈
cos[n

(
ψ − Ψ′

n

)
]
〉

(1)

Due to limited statistics, measurements of v′
n typically rely on measurements of vn: the fourier coefficients of

the yield of an inclusive set of low pT particles with angle φ.

vn ≡
〈
ein(φ−Ψn)

〉
= 〈cos[n (φ− Ψn)]〉 (2)

These differential flow measurements have proven effective at determining the event-by-event average
〈
v′
n

〉
.

To determine fluctuations in path length dependent Jet energy loss, or fluctuations in other rare probes, we

introduce an extension of this method to determine fluctuations in v′
n and correlations between v

′
n and v

2
n. We

then present a toy model to demonstrate the sensitivity of these observables, and their capacity to identify

fluctuations in v′
n and vn in which we:

Evaluate multivariate moments of v′
n

2, v2
n, and V

′
nV

∗
n = v′

nvne
in(Ψ′

n−Ψn) using multiparticle correlators

Use a bivariate copula distribution to model flow fluctuations and correlations between v′
n and vn

Evaluate a variety of observables using the bivariate v′
n and vn distribution

Demonstrate the sensitivity of the various observables to the fuctuations and correlations in v′
n and vn

Observables

We use a new class of multiparticle correlators [3] to construct various observables with higher order

dependence on POI angles to measure fluctuations in v′
n and correlations between v

′
n and vn.

Generating Function Cumulants: (hn{2k})We generalize methods used for the construction of differential
cumulants by expading a generating function that allows for higher order dependence on POI angles.

Symmetric and Asymmetric Cumulants [2] (nSC, nASC): A newer version of cumulants that determine
the genuine correlations between a set of stochastic variables by subtracting combinatoric autocorrelations

Central Moments (CM ): Moments that correlate fluctuations from the mean between stochastic variables
Γ and ζ : Observables that compare relative fluctuations and correlations between two sets of stochastic
variables by taking their ratios (ζ) and differences (Γ).

We examine three observables in depth on this poster:
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n
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Fluctuation ToyModel

We consider distributions of vn and v
′
n to be

parametrized identically, but with different parameter

values producing different amounts of fluctuations in

their distributions.

The models we choose are the Elliptic Power

distribution, P (vn : ε0, α) and the Gaussian
distribution P (vn : µ, σ). To demonstrate their
feasibility as models for v′

n, their fits to Glauber

Eccentricity data are shown in Fig. (1).

Finally, we use a gaussian copula model to form a

joint distribution of v′
n and vn. This parametrization

allows us to directly parametrize the pearson

correlation coefficient ρ(v′
n, vn). The complete

bivariate distributions are visible in Fig. (2). Figure 1. Elliptic Power distribution and Gaussian

distribution fit to Glauber ε2 data from 5-10% centrality.

Figure 2. Bivariate Copula Models with Elliptic Power marginal distributions (left) and Gaussian marginal distributions (right). The actual

distribution, Monte-Carlo sampled data, and distributions for v2
n, v

′
n

2, and V ′
nV

∗
n are shown for each bivariate distribution,

demonstrating a correspondance between correlations in v′
n and vn, to correlations between v

′
n

2 and v2
n, as well as V

′
nV ∗n and v2

n

Isolating Fluctuations

Each bivariate distribution uses two parameters for P (v′
n), two parameters for P (vn), and ρ.

For a given parametrization, we fix the parameters that can be deduced using existing observables:

parameters for P (v′
n), and most strongly related to

〈
v′
n

〉
Then we iterate through the remaining parameters: ρ(v′

n, vn) and the parameter governing fluctuations in v′
n.

At each point in this 2D phase space we evaluate each observable by sampling the bivariate distribution.

Results

We plot the observables in Eqs. (3,4,5) as a function of ρ and their relative spread (RS) defined as RS =
σ(v′

n)µ(vn)/σ(vn)µ(v′
n), to determine their sensitivity to flucutations in v′

n relative to fluctuations in vn without
being biased by

〈
v′
n

〉
or 〈vn〉 .
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Figure 3. The normalized Asymmetric Cumulant nASC(v2
n, v

2
n, v

′
n

2) represents a correlation between v4
n and v

′
n

2, or a correlation between
a departure of v′

n
2 from 〈v′

n
2〉 with a squared departure of v2

n from 〈v2
n〉. It shows strong dependence on ρ, and weak dependence on RS
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Figure 4. The observable ζ(V ′
nV

∗
n , V

′
nV

∗
n ; v2

n, v
2
n) is plotted as a function of ρ and RS. While the results for each distribution look

disparate, considering the range of RS for the Elliptic Power case indicates a similar behavior displayed by both plots. It’s clear that this

quantity is most sensitive to RS, especially at lower ρ values.
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Figure 5. Γ(v2
n, V

′
nV

∗
n , v

2
n, v

2
n) identifies the difference between the normalized covariance of V ′

nV
∗
n with v

2
n, and the variance of v

2
n.

Positive values for this quantity can be found in [1], suggesting large values of ρ and or RS.

Conclusions

The observables shown here can discern second order fluctuations in v′
n, and correlations between vn and v

′
n

under bivariate copula flow correlation models. It is clear that under these vn distributions, ζ(V ′
nV

∗
n , V

′
nV

∗
n ; v2

n, v
2
n)

is a solid proxy for RS, and that nASC(v2
n, v

2
n, v

′
n

2) has strong sensitivity to ρ. A measurement of any one of these
observables can be used to constrain ρ and RS to a range of level curves apparent in Figs. (3,4,5). Additionally,
at any point on these plots where their level curves don’t intersect, two or more of these observables can be

used in tandem to uniquely identify the RS and ρ for an event-by-event distribution of vn and v
′
n.
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