
Turn to SoftDrop for inspiration – algorithm designed to trim soft, wide-angle radiation.

1. Anti-𝑘𝑇 jet finding on final state hadron data.

2. Cambridge-Aachen (C/A) reclustering.

3. Decluster C/A jet (call it 𝑗0), producing two prongs. Call them 𝑗1 and 𝑗2.

Test for the SoftDrop condition:

𝑧𝑔 > 𝑧𝑐𝑢𝑡
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𝑧𝑐𝑢𝑡 , 𝑅0, 𝛽 variable parameters

4. If condition is met, return 𝑗0, else repeat step 3 on the harder prong.

With well-chosen cuts on both the prongs and the splitting data, SoftDrop can recover the first 𝑧𝑔 (that 

satisfies all cuts) with a good correlation (𝑅2 ≈ 0.6).

→ We can use SoftDrop-like cuts on our data to improve our 𝒛𝒈 predictions from ML!
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Jets

JETSCAPE Framework1,2,3

Monte Carlo simulation of relativistic heavy-ion collisions.

Many modules for soft and hard physics. 
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We use 4 modules that deal with jets in quark-gluon plasma (QGP):

1. Parton Gun – fires a parton with a given energy and flavor in the x-direction.

2. MATTER – propagates and splits the initial jet parton, until its virtuality falls below a threshold 
Q0.

3. LBT – propagates low-virtuality and real partons through the QGP medium (not used in this 
study).

4. Hybrid Hadronization – hadronizes partons through recombination (short distances) and string 
fragmentation (long distances).

“Jet” → narrow cone of partons and hadrons; only occur in high-energy 

(≫1 GeV) collisions.

• Can be used as probes to understand QGP properties

Neural Networks

Why Reconstruct Jet History?

• We would like to understand the local properties of the surrounding medium, which is directly linked 
to the space-time evolution of a jet shower.

• Extracting jet space time evolution poses a challenge – experiments cannot directly measure jet 
history, and only have access to final state hadron momenta.

• Can we use machine learning (ML) to reconstruct the jet history?

• Ultimately, we want to reconstruct jet history in real collisions, using final state data – but for now, 
we want to test the feasibility of this approach using data from a Monte Carlo simulation.

A Neural Network (NN) is a type of machine learning (ML) architecture. 

The NN takes a set of features, Ԧ𝑥, as its input (e.g. momentum vectors of particles).

Passes the features through “hidden layers” consisting of “neurons”. Each neuron takes an input 𝑥𝑗 in 

terms of the outputs 𝑦𝑖  of the neurons that feed it

𝑥𝑗 = ෍

𝑖

𝑤𝑖𝑗 𝑦𝑖 + 𝑏𝑗

where 𝑤𝑖𝑗 and 𝑏𝑗 are the weights and biases, which can be adjusted.

Neurons apply nonlinear activation functions to their inputs (e.g. tanh): 𝑦𝑗 = 𝑓activation(𝑥𝑗)

Get a predicted value, 𝑦predicted, as the output layer (see figure below).

A supervised NN is trained using known outputs. Predicted values are compared to known/actual 

values using a loss function e.g. Mean Squared Error (MSE), given by

𝐸 =
1
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𝑦predicted − 𝑦actual
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The model is then tuned to reduce the loss function, commonly using gradient descent,

𝑤𝑖𝑗 → 𝑤𝑖𝑗 − 𝛼
𝜕𝐸

𝜕𝑤𝑖𝑗
, 𝑏𝑗 → 𝑏𝑗 − 𝛼

𝜕𝐸

𝜕𝑏𝑗
, 𝛼 = Learning rate

Longitudinal & Transverse Observables 
We want to predict two observables, 𝑅𝑔 and 𝑧𝑔, related to transverse and longitudinal jet structure 

respectively. They are defined as

𝑅𝑔
max = Max 𝜂1 − 𝜂2

2 + 𝜙1 − 𝜙2
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 ∝ Angle of 𝑤𝑖𝑑𝑒𝑠𝑡 splitting

        𝑧𝑔
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=
min(𝑝𝑇1, 𝑝𝑇2)

𝑝𝑇1+𝑝𝑇2
 for the 𝑓𝑖𝑟𝑠𝑡 1 → 2 split

where 𝑝𝑇1 and 𝑝𝑇2 are the daughters’ transverse momenta.

Training Data

Note: We are sticking to 100 GeV vacuum jets in this study. 

JETSCAPE provides two sets of data: (𝜂, 𝜙, 𝐸) of partons, and (𝜂, 𝜙, 𝐸) of hadrons. 

Ultimately, we want good predictions from the hadron data, since that is what experiments can 

measure.

• Features: (𝜂, 𝜙, 𝐸) of the partons/hadrons/reclustered jets.

• 2-3 hidden layers, each with 10-200 nodes (neurons).

• Activation functions: ReLU, tanh and/or sigmoid.

• Size of training and test sets: ∼140,000 events each.

Input Layer 
(Features)

Hidden 
Layers

Output Layer 
(Prediction)

Repeated until the loss function is optimized 

for best predictions.

Unlike linear regression, NNs can find 

complex, nonlinear patterns.

In this study, we use the JETSCAPE 

framework to generate training data for a NN.

SoftDrop5-Inspired Cuts

1. Further refine cuts, algorithms and procedures.

2. Apply to 𝑒+𝑒− and 𝐴 + 𝐴 simulations

3. Apply to experimental data.

Future Work

Clustering Algorithms4

We use Fastjet to cluster the hadrons into jets of varying radii 𝑅. Clusters 

particles within distance 𝑑𝑖𝑗  of each other, where

𝑑𝑖𝑗 = min 𝑝𝑇𝑖
2𝑘 , 𝑝𝑇𝑗

2𝑘
𝜂𝑖 − 𝜂𝑗
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+ 𝜙𝑖 − 𝜙𝑗
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𝑅2

𝑘 = −1 → anti-𝑘𝑇 algorithm             𝑘 = 0 → Cambridge-Aachen algorithm

1. Want to align with experimental procedure – using jet clustering of hadrons as input. 

Unfortunately, this makes the ML predictions worse, as final state information is lost.

2. Want to ask the right question. What observable might be easier to predict from final state data? 

We can apply cuts to data and observables, as seen below.

Two Challenges

• 𝑅 = 1.0 anti-𝑘𝑇 jet finding, 𝑅 = 0.4 C/A reclustering.

• SoftDrop-like condition on parton splittings:

𝑧𝑔 > 𝑧𝑐𝑢𝑡 𝑅𝑔
𝛽

• Additional cut: 𝑧𝑔 > 0.1.

Predict first 𝑧𝑔 (if any) that satisfies both criteria. With 𝑧𝑐𝑢𝑡 = 0.1,

𝛽 = −2, we get markedly improved predictions from 

reclustered jet data (top right).

• Softdrop-like condition favors prominent splittings (large 𝑧𝑔 

or large 𝑅𝑔).

• Cut on 𝑧𝑔 removes remaining soft, wide-angle splittings 

(bottom right).

Resulting splittings are easier to resolve → better predictions!

Preliminary finding: Longitudinal structure information is lost in hadronization.

𝑧𝑔
1

 is still well-predicted 

by parton data (left) but is 

poorly-predicted by 

hadron data (right).
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𝑅𝑔
max is well-predicted by 

both parton data (left) and 

hadron data (right).
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