

۲

 \bullet

Reconstructing Jet History With Machine Learning

A. Sengupta ^{1, 2}, R. J. Fries ^{1, 2}, M. Kordell ^{1, 2} ¹ Cyclotron Institute, Texas A&M University, College Station TX 77843. ² Department of Physics and Astronomy, Texas A&M University, College Station TX 77843.

Jets

Why Reconstruct Jet History?

Extracting jet space time evolution poses a challenge – experiments cannot directly measure jet

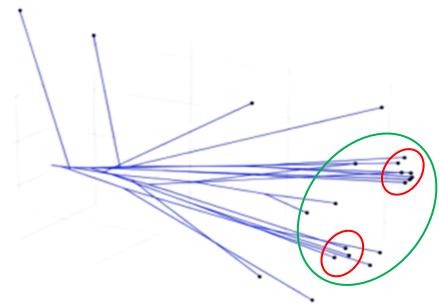
Ultimately, we want to reconstruct jet history in real collisions, using final state data – but for now,

we want to test the **feasibility** of this approach using data from a Monte Carlo simulation.

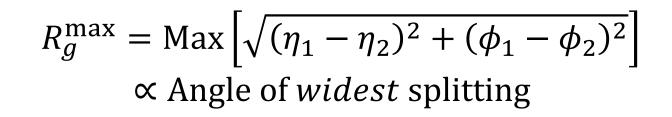
"Jet" \rightarrow narrow cone of partons and hadrons; only occur in high-energy $(\gg 1 \text{ GeV})$ collisions.

Can be used as probes to understand QGP properties

to the space-time evolution of a jet shower.



We want to predict two observables, R_q and z_q , related to transverse and longitudinal jet structure respectively. They are defined as



Longitudinal & Transverse Observables

$$z_g^{(1)} = \frac{\min(p_{T_1}, p_{T_2})}{p_{T_1} + p_{T_2}} \text{ for the } first \ 1 \to 2 \text{ split}$$

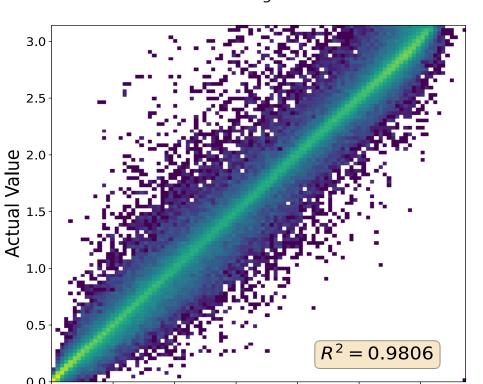
Parton R_a^{\max} Predictions

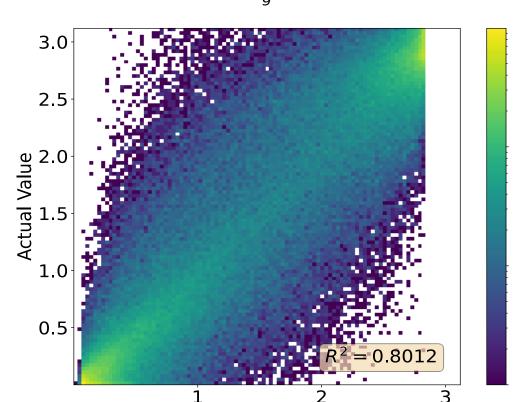
2.0

Predicted Valu

Hadron R_q^{max} Predictions

 R_a^{\max} is well-predicted by both parton data (left) and hadron data (right).





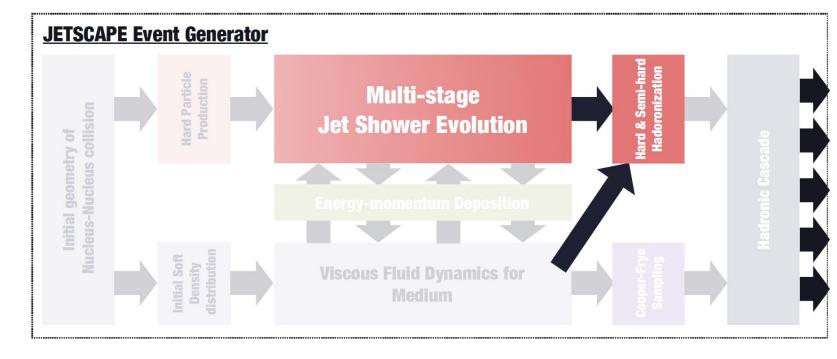
history, and only have access to final state hadron momenta.

Can we use **machine learning (ML)** to reconstruct the jet history?

JETSCAPE Framework^{1,2,3}

Monte Carlo simulation of relativistic heavy-ion collisions.

Many modules for soft and hard physics.

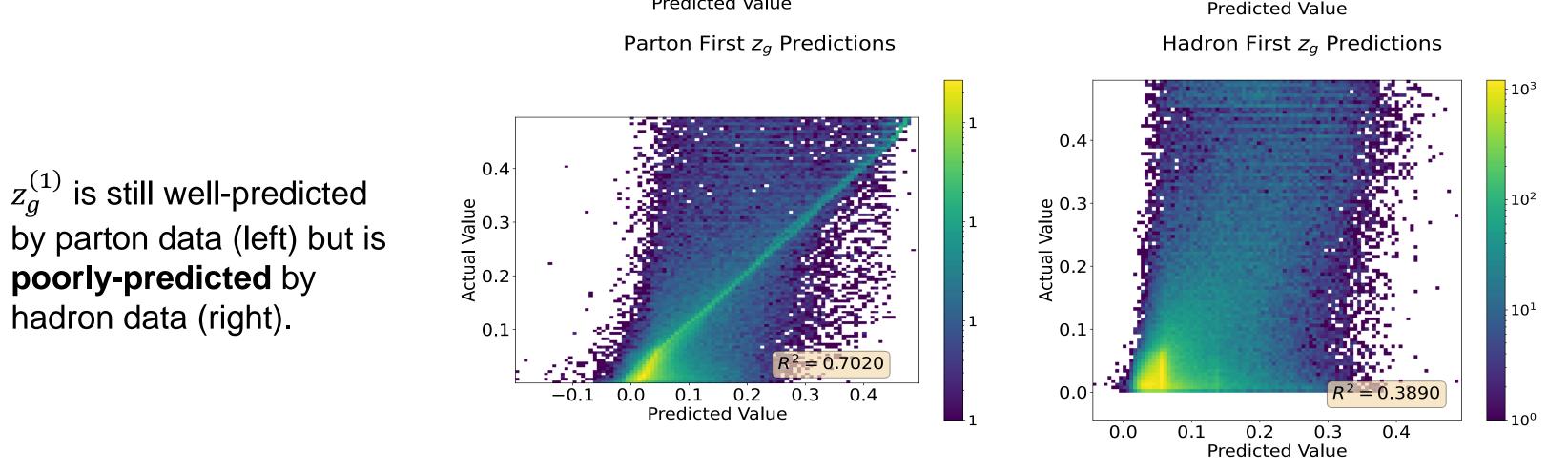


Y. Tachibana (2022)

We use 4 modules that deal with jets in quark-gluon plasma (QGP):

- **1. Parton Gun** fires a parton with a given energy and flavor in the x-direction.
- **2.** MATTER propagates and splits the initial jet parton, until its virtuality falls below a threshold Q_0 .
- **3.** LBT propagates low-virtuality and real partons through the QGP medium (not used in this study).
- **4.** Hybrid Hadronization hadronizes partons through recombination (short distances) and string fragmentation (long distances).

Neural Networks



Preliminary finding: Longitudinal structure information is lost in hadronization.

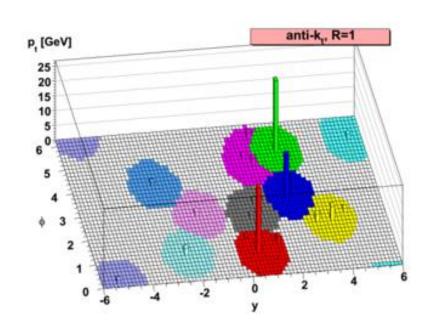
Two Challenges

- 1. Want to align with experimental procedure using jet clustering of hadrons as input. Unfortunately, this makes the ML predictions worse, as final state information is lost.
- 2. Want to ask the right question. What observable might be easier to predict from final state data? We can **apply cuts** to data and observables, as seen below.

Clustering Algorithms⁴

We use Fastjet to cluster the hadrons into jets of varying radii R. Clusters particles within distance d_{ii} of each other, where

$$d_{ij} = \min(p_{Ti}^{2k}, p_{Tj}^{2k}) \frac{(\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2}{R^2}$$



A Neural Network (NN) is a type of machine learning (ML) architecture.

The NN takes a set of features, \vec{x} , as its input (e.g. momentum vectors of particles).

Passes the features through "hidden layers" consisting of "neurons". Each neuron takes an input x_i in terms of the outputs y_i of the neurons that feed it

 $x_j = \sum_i w_{ij} y_i + b_j$

where w_{ij} and b_j are the weights and biases, which can be adjusted.

Neurons apply nonlinear **activation functions** to their inputs (e.g. tanh): $y_i = f_{activation}(x_i)$

Get a predicted value, $y_{\text{predicted}}$, as the output layer (see figure below).

A supervised NN is trained using known outputs. Predicted values are compared to known/actual values using a loss function e.g. Mean Squared Error (MSE), given by

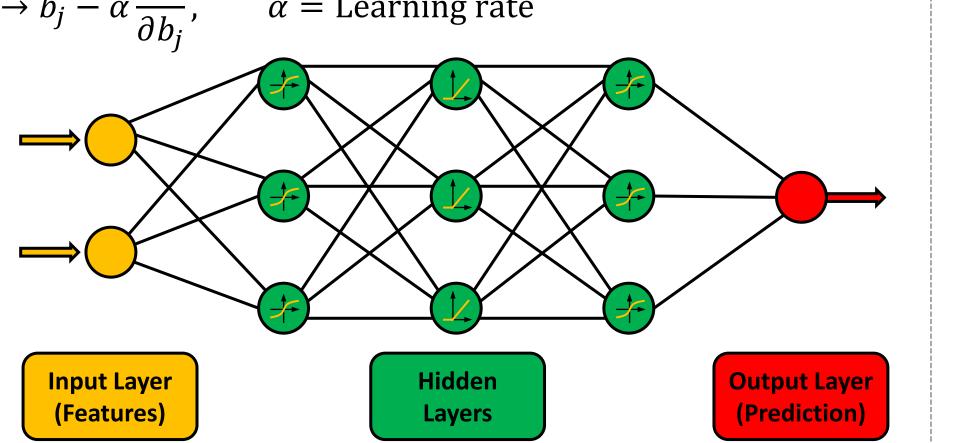
 $E = \frac{1}{2} \left(y_{\text{predicted}} - y_{\text{actual}} \right)^2$

The model is then tuned to reduce the loss function, commonly using gradient descent,

 $w_{ij} \rightarrow w_{ij} - \alpha \frac{\partial E}{\partial w_{ij}}, \qquad b_j \rightarrow b_j - \alpha \frac{\partial E}{\partial b_i}, \qquad \alpha = \text{Learning rate}$

Repeated until the loss function is optimized for best predictions.

Unlike linear regression, NNs can find complex, nonlinear patterns.

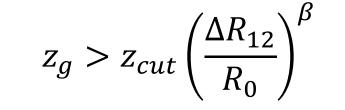


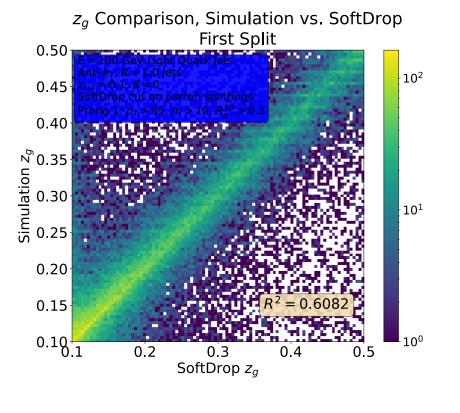
 $k = 0 \rightarrow \text{Cambridge-Aachen algorithm}$ $k = -1 \rightarrow \text{anti-}k_T$ algorithm

SoftDrop⁵-Inspired Cuts

Turn to **SoftDrop** for inspiration – algorithm designed to trim soft, wide-angle radiation.

- 1. Anti- k_T jet finding on final state hadron data.
- 2. Cambridge-Aachen (C/A) reclustering.
- 3. Decluster C/A jet (call it j_0), producing two prongs. Call them j_1 and j_2 . Test for the SoftDrop condition:



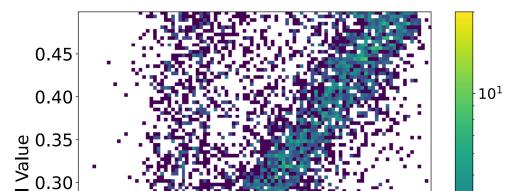


 z_{cut} , R_0 , β variable parameters

4. If condition is met, return j_0 , else repeat step 3 on the harder prong.

With well-chosen cuts on both the prongs and the splitting data, SoftDrop can recover the first z_a (that satisfies all cuts) with a good correlation ($R^2 \approx 0.6$).

- \rightarrow We can use SoftDrop-like cuts on our data to improve our z_g predictions from ML!
 - R = 0.40 Subjet First $z_a^{>0.1} > 0.1 (R_g)^{-2}$ Predictions
- R = 1.0 anti- k_T jet finding, R = 0.4 C/A reclustering.
- SoftDrop-like condition on parton splittings: $z_g > z_{cut} (R_g)^{\rho}$



In this study, we use the JETSCAPE framework to generate training data for a NN.

Training Data

Note: We are sticking to 100 GeV **vacuum jets** in this study.

JETSCAPE provides two sets of data: (η, ϕ, E) of partons, and (η, ϕ, E) of hadrons.

Ultimately, we want good predictions from the **hadron** data, since that is what experiments can measure.

- Features: (η, ϕ, E) of the partons/hadrons/reclustered jets. \bullet
- 2-3 hidden layers, each with 10-200 nodes (neurons).
- Activation functions: ReLU, tanh and/or sigmoid.
- Size of training and test sets: \sim 140,000 events each.

Additional cut: $z_a > 0.1$.

Predict first z_a (if any) that satisfies both criteria. With $z_{cut} = 0.1$, $\beta = -2$, we get **markedly improved predictions** from reclustered jet data (top right).

- Softdrop-like condition favors **prominent** splittings (large z_a or large R_a).
- Cut on z_g removes remaining soft, wide-angle splittings (bottom right).

Resulting splittings are easier to resolve \rightarrow better predictions!

Future Work

- 1. Further refine cuts, algorithms and procedures.
- 2. Apply to e^+e^- and A + A simulations

3. Apply to experimental data.

¹ J.H. Putschke et. al., arXiv:1903.07706, ² A. Kumar et. al., Phys. Rev. C **102**, 054906 (2020), ³ A. Kumar et. al., arXiv:2204.01163 ⁴ M. Cacciari, G.P. Salam, G. Soyez, JHEP **04** (2008), 063

⁵ A.J. Larkoski, S. Marzani, G. Soyez, J. Thaler, JHEP **1405** (2014), 146

Acknowledgments: This work was funded in part by NSF Grant Numbers PHY-2111568 and PHY-2004571.

to 0.25 0.20 0.15 0.10 Predicted Value

0.3 0.4 First $z_a^{>0.1} > 0.1 (R_a)^{-2}$

 R_q vs. First $z_q^{>0.1} > 0.1 (R_q)^{-2}$