Collective Motions

Various Fourier harmonics in heavy-ion collisions correspond to distinct collectivity modes:
a) v_{1} directed flow;
b) v_{2} elliptic flow;
c) a_{1} chiral magnetic effect (CME);
d) a_{3} sheer-induces $\mathrm{CME}^{[1]}$ (si-CME).

If collective motions are non-interdependent, the observed Fourier coefficients are inter-linked.

Propose the New Form

We introduce new sets of non-interdependent Fourier coefficients \tilde{a}_{n} and \tilde{v}_{n} to better represent the physics, and takes factorized form in azimuthal distribution.

The mapping between old and new sets reveals interdependency between conventional coefficients.

Assuming the prominent elliptic flow magnitude is almost unchanged, $v_{2} \approx \tilde{v_{2}}$, we study the relation among (a_{1}, v_{2}, a_{3}) and (v_{1}, v_{2}, v_{3}) with model simulations.

Conclusion

We stipulate a likely scenario where collective motions in heavy-ion collisions may be non-interdependent, and that the particle azimuthal distribution can take a factorized form, which complements the widely used long linear Fourier series.

We predict the extra cross terms between the CME-induced \tilde{a}_{1} and elliptic flow v_{2}. EBE-AVFD verifies the observed a_{3} receives a sizable contribution from a_{1} and v_{2}. A finite a_{3}, if confirmed, constitutes a strong evidence of the CME, whether it originates from si-CME or CME coupled with v_{2}. In addition, the observation of a $\mathrm{v}_{3}{ }^{\text {odd }}$ component with AMPT establishes another signature of the factorized Fourier expansions.

Model Evidence: AVFD

Event-by-Event Anomalous-Viscous Fluid Dynamics (AVFD)[2] model simulates the dynamical CME transport for u, d and s quarks in addition to the hydrodynamic expansion, and further handles local charge conservation and resonance decays.
$\tilde{a}_{3}=0 ; v_{2} \approx \tilde{v_{2}}$
$a_{1}=\tilde{a}_{1}\left(1-v_{2}\right)$
$a_{3}=\tilde{a}_{1} v_{2}$

- Correlations between a_{1} and v_{2} may contain trigonometric identity in addition to the math relation we look for.
- The observed a_{3} as a function of p_{T} can be described by $a_{1} v_{2} /\left(1-v_{2}\right)$ (shaded bands) as predicted.

Model Evidence: AMPT

A multi-phase transport (AMPT) ${ }^{[3]}$ model with string melting version properly reproduces particle spectra and flow dynamics at both RHIC and LHC energies.
$\tilde{v_{3}}=0 ; v_{2} \approx \tilde{v_{2}}$
$-==\overline{v_{1}}=\overline{v_{1}}\left(1+v_{2}\right)$
$v_{3}=\tilde{v_{1}} v_{2}$

Third-order geometry is averaged to zero from e-by-e fluctuation.

- The observed v_{3} is rapidity-odd, can be well described by $\mathrm{v}_{1} \mathrm{v}_{2} /\left(1+\mathrm{v}_{2}\right)$ (shaded bands) as predicted.
- The trend and magnitude of $v_{3}{ }^{\text {odd }}$ meets our expectations for all the particle species. The simulations support and verify another imprint of factorized actions.
- Further analyses can be applied to RHIC/LHC data.

Reference:

[1] M. Buzzegoli et al, Phys. Rev. C 106, L051902 (2022). [2] S. Shi et al, Ann. Phys. 394, 50 (2018)
[3] Z. Lin,et al, Phys. Rev. C 72, 064901 (2005)

Acknowledgements

This work is supported by the U.S. Department of Energy under Grant No. DE-FG0288ER40424, Grants No. DE-AC0298CH10886 and No. DE-FG0289ER40531, and by the National Natural Science Foundation of China under Contract No. 1835002. We thank Shuzhe Shi, Jinfeng Liao and Yufu Lin for discussion on the EBE-AVFD. We thank Zi-Wei Lin and Guo-Liang Ma for providing the AMPT code. We are especially grateful to Zhongling Ji and Yicheng Feng for the fruitful discussions.

QR code for paper

