Quark Matter 2023 - the XXXth International Conference on Ultra-relativistic Nucleus-Nucleus Collisions

UCLA

Non-interdependent Collective Motions in Heavy-ion Collisions

Zhiwan Xu^[1], Gang Wang^[1], Aihong Tang^[2], Huan Zhong Huang^[1,3]

[1] University of California, Los Angeles, CA; [2] Brookhaven National Lab, NY; [3] Fudan University, Shanghai

Collective Motions

Various Fourier harmonics in heavy-ion collisions correspond to distinct collectivity modes: a) v₁ directed flow;

(d)

 $\otimes y$

 $\odot z$

 V_1

Model Evidence: AVFD

Event-by-Event Anomalous-Viscous Fluid Dynamics (AVFD)^[2] model simulates the dynamical CME transport for *u*, *d* and *s* quarks in addition to the hydrodynamic expansion, and further handles local charge conservation and resonance decays.

Correlations between a₁ and v₂ may contain trigonometric identity in addition to the math relation we look for.

- a₁ chiral magnetic effect (CME);
- d) a₃ sheer-induces CME^[1] (si-CME).

If collective motions are non-interdependent, the observed Fourier coefficients are inter-linked.

Propose the New Form

(c)

We introduce new sets of non-interdependent Fourier coefficients $\tilde{a_n}$ and $\tilde{v_n}$ to better represent the physics, and takes factorized form in

a3

 \overrightarrow{B}

The observed a_3 as a function of p_T can be described by $a_1v_2/(1-v_2)$ (shaded bands) as predicted.

azimuthal distribution.

The mapping between old and new sets reveals interdependency between conventional coefficients.

Assuming the prominent elliptic flow magnitude is almost unchanged, $v_2 \approx \tilde{v_2}$, we study the relation among (a_1, v_2, a_3) and (v_1, v_2, v_3) with model simulations.

Model Evidence: AMPT

A multi-phase transport (AMPT)^[3] model with string melting version properly reproduces particle spectra and flow dynamics at both RHIC and LHC energies.

Third-order geometry is averaged to zero from eby-e fluctuation.

- \blacktriangleright The observed v₃ is rapidity-odd, can be well described by $v_1v_2/(1+v_2)$ (shaded bands) as predicted.
- ► The trend and magnitude of v₃^{odd} meets our expectations for all the particle species. The simulations

Conclusion

We stipulate a likely scenario where collective motions in heavy-ion collisions may be non-interdependent, and that the particle azimuthal distribution can take a factorized form, which complements the widely used long linear Fourier series.

We predict the extra cross terms between the CME-induced \tilde{a}_1 and elliptic flow v_2 . EBE-AVFD verifies the observed a_3 receives a sizable contribution from a_1 and v_2 . A finite a₃, if confirmed, constitutes a strong evidence of the CME, whether it originates from si-CME or CME coupled with v₂. In addition, the observation of a v₃^{odd} component with AMPT establishes another signature of the factorized Fourier expansions.

support and verify another imprint of factorized actions.

Further analyses can be applied to RHIC/LHC data.

Reference:

[1] M. Buzzegoli et al, Phys. Rev. C 106, L051902 (2022). [2] S. Shi et al, Ann. Phys. **394**, 50 (2018) [3] Z. Lin, et al, Phys. Rev. C 72, 064901 (2005)

Acknowledgements

This work is supported by the U.S. Department of Energy under Grant No. DE-FG0288ER40424, Grants No. DE-AC0298CH10886 and No. DE-FG0289ER40531, and by the National Natural Science Foundation of China under Contract No. 1835002. We thank Shuzhe Shi, Jinfeng Liao and Yufu Lin for discussion on the EBE-AVFD. We thank Zi-Wei Lin and Guo-Liang Ma for providing the AMPT code. We are especially grateful to Zhongling Ji and Yicheng Feng for the fruitful discussions.

