

Pair Spectrometer Luminosity Detector

for the ePIC experiment at the EIC

Aranya Giri and Dhevan Gangadharan, University of Houston

Detector Goal: Measure luminosity by counting Bremsstrahlung photons produced at ePIC.

Dominant part of total inelastic cross section is QED Bremsstrahlung (BH), σ_{BH} , which is **precisely calculable**.

Fig 1. Feymann diagram of Bremsstrahlung processes.

Average luminoisty

 $L = R_{\gamma}/\sigma_{BH} \text{ (cm}^{-2}\text{ s}^{-1}) \sim 10^{34} \text{ (10}^2 \text{ times ZEUS-HERA)}$ [1]

Major Challenges

1. Synchrotron radiation 2. High rate BH radiation

Pair Spectrometer (PS) luminosity detector

- Indirectly measure R_v (dN_v / dt) by e^{\pm} pair conversions.
- Deals with the major challenges

Fig 2. ePIC PS Luminosity Detector pictorial representation.

Pair Spectrometer Calorimeter

Requirements

•~1% uncertainty for

absolute luminosity

relative luminosity [1]

• Less than 10⁻⁴ for

Requirements and Design

- 1. Insight into the acceptance and fairly good energy resolution
- 2. Radiation hardness & low integration time (< 10 ns bunch spacing)
- 3. Track shower profile for improved pile up (multiple e[±] hits) treatment

- Calorimeter(CALs) with alternating X \parallel and Y \parallel modular layers.
- Tungsten (W) powder + epoxy infused into the module of scintillating fibers (ScFi).
- ScFi's in a module are kept uniform with brass meshes [2].

Fig 3. The Modular and Fiber Structure of W-Scfi CALs without W powder.

Resolution comparable with ZEUS

• Stochastic Term (a) – 13.5 % (for ZEUS – 13% [3])

Fig 5. Standalone energy resolution of PS CALs, e- hit directly at a CAL.

Pile-up treatment

• 3D shower profile from alternating layers

Fig 4. Shower energy profile of $2 e^-$ from all the $X \parallel$ layers, e^- were separated 3 cm along Y-axis.

Additional Benefit: Distinguishing background hadrons

• Energy deposition along z doesn't diminish like for e

Fig 6. π^+ energy deposition profile from all the X || layers.

Current Status

- The pair spectrometer luminosity detector has been implemented in DD4hep (geant4 based detector simulation package) to perform simulations.
- XY \parallel design of pair spectrometer calorimeter show promising results with energy resolution, pile up treatment and distinguishing background from e^{\pm} hits.
- Optimization of calorimeter design is still in progress in coordination with University of York (UK) group.

References

- 1) Nucl. Phys. A 1026 (2022) 122447
- 2) O D Tsai et al 2012 J. Phys.: Conf. Ser. 404 012023
- 3) Nucl. Instrum. Meth. A565: 572-588,2006