

Simulation Results of Proton-Endcap ECal of the ePIC Experiment at Electron-Ion Collider Zhiwan Xu and Zhongling Ji, UCLA for the ePIC pECal Detector Consortium

□ p/A beam: Forward/positive direction

- Electron beam: Backward/negative direction
- □ Hadron endcap (W/ScFi pECal): Sampling ECal, good energy resolution
- □ Lepton endcap (EEEMC): Homogeneous ECal, excellent energy resolution

pECal Designs [1]

Input: Jet constituents

- LSTM deals with variable-sized input
- Cell states memorize previous input

- □ Previous hidden state (h_{t-1}) and current input (X_t) produce forget gate (f_t) , input gate (i_t) , cell candidate (\tilde{C}_t) , and output gate (O_t)
- □ Previous cell state (C_{t-1}) and cell candidate (\tilde{C}_t) produce current cell state: $C_t = f_t \cdot C_{t-1} + i_t \cdot \tilde{C}_t$
- □ Cell state (C_t) has memory and produces the next hidden state (h_{t+1}) and the current output (Y_t): $Y_t = h_{t+1} = O_t \cdot \tanh C_t$

Heavy-Flavor Jet Identifications

Use LSTM to identify HF jets
 Input: Jet constituents
 Four momentum
 Track mom, E/HCal energy

Pythia DIS events:

- $e + p \rightarrow q(jet) + X$ $Q_{min}^2 > 10 \text{ GeV}^2$
- Jet flavor ID: Use the flavor of the hard-scattered quark q for its closest jet
- □ Signal: HF jets; Bkg: LF jets □ N_{HF} : $N_{LF} \approx 1$: 18
- Large weight on signal (HF)
- Best overall performance:
 Weight signal by factor 15

□ 70% accuracy, 50% efficiency, 10% purity, 4x bkg rejection

Summary and Outlook

- D pECal energy resolution meets the yellow report requirement.
- □ For $\pi^0 \rightarrow \gamma \gamma$ separations, MLP performs much better than the χ^2 cut based on the shower profile analysis.
- LSTM gives reasonable performance for heavy-flavor jet identifications by using the tracking and forward E/HCal.

- Merging probability
 (~10% at 60 GeV at η = 2)
 from neural network
 Input:
 5x5 tower energies
 pECal x and y positions
- MLP with one hidden layer
- NN output: Single cut value
- \Box > cut value: Single γ (signal)
- \Box < cut value: Merged $\gamma\gamma$ (background)
- **D** Optimal cut: Max $S/\sqrt{S+B}$
- \Box Left figure: $E_{\gamma} = E_{\pi^0} = 60 \text{ GeV}$

□ Including vertex and dRICH PID will give better jet ID in the future.

[1] EIC yellow report. Nucl. Phys. A 1026, 122447 (2022)
 [2] Phys. Rev. D 94, 112002 (2016)
 [3] Remote Sens. 14, 1803 (2022)

