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1. Jet Multiplicity Method
Jet measurements in heavy ion collisions can provide con-
straints on the properties of the Quark Gluon Plasma
(QGP) but the kinematic reach is limited by the presence
of a fluctuating background of soft particles not due to
hard scatterings. Studies of the background at the Large
Hadron Collider (LHC) found that the fluctuations in
background energy density of random cones are well de-
scribed by a random background with correlations arising
from hydrodynamical flow and Poissonian fluctuations,

σδpT
=

√√√√Nσ2
pT

+ (N + 2N2
∞∑
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v2
n)⟨pT ⟩2. (1)

where δpT = pT,Cone − pT ruth
T,Cone is the expected back-

ground from the area subtraction method [1, 2].
We propose a multiplicity method as an alternative to
the area method,

pCorr.N
T,jet = ptot

T,jet − ρMult(Ntot − Nsignal). (2)

This approach leverages the natural variable N which
drives the width of the δpT distribution.

2. Machine Learning Methods
Previous applications of machine learning (ML) to jet momentum resolution have demonstrated significant improve-
ments, particularly at low jet momentum, compared to traditional methods of background subtraction [3]. The
enhanced performance of ML methods suggests that there is valuable information accessible to machine learning algo-
rithms, which contributes to this improvement. We apply interpretable machine learning techniques to extract analytic
expressions from a neural network trained to predict corrected jet momentum.

Figure 1. Procedure for extracting an analytical expression from the mapping between input jet features to the
corrected jet momentum using a neural network and symbolic regression.

3. Improved Momentum Resolution
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Figure 2. Comparisons of δpT width vs pjet
T for each background subtraction method for Au+Au collisions at √

sNN=
200 GeV and Pb+Pbcollisions at √

sNN= 2.76 TeV.

4. Unfolding to lower pT,jet

The improvement in jet momentum resolution extends
the kinematic range of the unfolded spectra to lower jet
momenta.
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Figure 3. Ratio of unfolded jet spectrum over truth
spectrum for (a) Au+Au collisions at √

sNN= 200 GeV
and (b) Pb+Pb collisions at √

sNN= 2.76 TeV.

5. More than a Coincidence
For all jet resolution parameters and collision energies the symbolic regression found that the best description of the
neural network has the functional form

pCorr.P ySR
T,Jet = ptot

T,Jet − C1(Ntot − C2). (3)

Figure 4. PySR optimization constants compared to average value of multiplicity method parameters versus jet
resolution parameter for Au+Au collisions at √

sNN= 200 GeV and Pb+Pb collisions at √
sNN= 2.76 TeV.

6.Conclusions
1.The multiplicity method achieves similar per-
formance without the model dependence of the
neural network.

2. Applying machine learning to measurements
requires ML methods that are interpretable.

Full details of this study are published here: Interpretable
Machine Learning Methods Applied to Jet Background
Subtraction in Heavy Ion Collisions. [4]
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