Probing the QGP to Hadron-Gas Phase Transition with Charge, Strange, and Baryon Balance Functions

C. Pruneau ${ }^{1}$, V. Gonzalez¹, B. Hanley ${ }^{1}$, Ana Marin², S. Basu ${ }^{3}$
(1) Wayne State University, (2) GSI, (3) Lund University

Introduction

Prior Works \& Known Properties of Balance Functions (BFs)
O Investigate particle production vs. collision centrality, seek evidence for delayed hadronization/two-stage quark emission w/ π and K BFs [1, 2, 3] Sensitivity to hadron decays, radial flow [4,5], diffusivity of light quarks $[6,7]$, chemical evolution of the hot matter formed in A-A collisions, quantum statistic effects [8],
O Related to net charge fluctuations cumulants κ_{2}^{Q} [9].

New Developments - This Work
O Account for a system's net-charge with Unified Balance Functions
o Mixed Species, Baryons and Strangeness

- Multi-particle BFs

Simulations shown performed with PYTHIA 8, pp collisions at selected collisions energies.

Unified Balance Functions [10, 11]

Original BF as Conditional Density
$B^{+\mid-}\left(\vec{p}_{1} \mid \vec{p}_{2}\right)=\rho_{2}^{+\mid-}\left(\vec{p}_{1} \mid \vec{p}_{2}\right)-\rho_{2}^{-\mid-}\left(\vec{p}_{1} \mid \vec{p}_{2}\right) \quad$ w $/ \rho_{2}^{\alpha \mid \beta}\left(y_{1} \mid y_{2}\right)=\frac{\rho_{2}^{\alpha \beta}\left(y_{1}, y_{2}\right)}{\rho_{1}^{\beta}\left(y_{2}\right)}$
Integral of BF
$I^{+-}=\frac{1}{\left\langle N_{1}^{-}\right\rangle} \int_{\Omega} d \vec{p}_{2} \int_{\Omega} d \vec{p}_{1} B^{+\mid-}\left(\vec{p}_{1} \mid \vec{p}_{2}\right)=\frac{1}{\left\langle N_{1}^{-}\right\rangle}\left[\left\langle N_{2}^{+-}\right\rangle-\left\langle N_{2}^{--}\right\rangle\right]$,

Unified Balance Functions: Defined for any combination $\alpha \beta$ of identified particles in an acceptance Ω.
$B^{\alpha \bar{\beta}}\left(y_{1}, y_{2} \mid \Omega\right)=\frac{1}{\left\langle N_{1}^{\bar{\beta}}\right\rangle}\left[C_{2}^{\alpha \bar{\beta}}\left(y_{1}, y_{2}\right)-C_{2}^{\bar{\alpha} \bar{\beta}}\left(y_{1}, y_{2}\right)\right]$
$\mathrm{w} / \quad C_{2}^{\alpha \mid \beta}\left(\vec{p}_{1}, \vec{p}_{2}\right)=\rho_{2}^{\alpha \beta}\left(\vec{p}_{1}, \vec{p}_{2}\right)-\rho_{2}^{\bar{\alpha} \bar{\beta}}\left(\vec{p}_{1}, \vec{p}_{2}\right)$
Use charge/strangeness densities for particles with $|\mathrm{q}|>1,|\mathrm{~s}|>1$.
Integral of Unified Balance Functions
$I^{+-}=\frac{1}{\left\langle N_{1}^{-}\right\rangle} \int_{\Omega} d \vec{p}_{2} \int_{\Omega} d \vec{p}_{1} B^{+\mid-}\left(\vec{p}_{1} \mid \vec{p}_{2}\right)=1$ for full acceptance Ω.

Sum Rule [10, 11]

Example: Assume a pion π^{+}is detected at \vec{p}_{2}, then negative particles $\bar{\alpha}$ must also be emitted to balance the charge.

Sum rule: $B^{-\mid \pi^{+}}\left(\vec{p}_{1} \mid \vec{p}_{2}\right)=\sum B^{\alpha \mid \pi^{+}}\left(\vec{p}_{1} \mid \vec{p}_{2}\right)$
$B^{\alpha \mid \pi^{+}}\left(\vec{p}_{1} \mid \vec{p}_{2}\right)$ integrates to a fraction of unity in the full acceptance. The fraction is determined by the relative abundances of specific particle production channels.

Probes details of particle production.

Multi-Particle Balance Functions [12]

Balance Functions Extended to 2n particle correlation functions based on n-particle cumulants. Example:
$B_{4}^{2(+) 2(-)}\left(\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3}, \vec{p}_{4}\right)=\frac{2}{4!/ 2!} \frac{\left[6 C_{4}^{++--}\left(\vec{p}_{1}, \ldots, \vec{p}_{4}\right)-4 C_{4}^{+---}\left(\vec{p}_{1}, \ldots, \vec{p}_{4}\right)+C_{4}^{----}\left(\vec{p}_{1}, \ldots, \vec{p}_{4}\right)\right]}{\left\langle N_{-}\left(N_{-}-1\right)\right\rangle}$
These functions also satisfy sum rules.

Summary

O UBFs defined w/ cumulants, i.e., genuine measures of correlations.
o Generalized for PID, mix species, multi- strange, \& charged particles.
o Generalized to multi-particle correlations as combinations of n-particle
cumulants.
O Satisfy simple sum rules.
O Study vs. acceptance will enable added sensitivity to particle
production, baryon stopping, measuring QGP properties.

