Repulsive A potential at high densities examined from heavy-ion collision and hypernuclear data

<u>Asanosuke Jinno</u>¹, Koichi Murase², Yasushi Nara³, and Akira Ohnishi²

- 1. Dept. Phys. Kyoto U.
- 2. YITP, Kyoto U.
- 3. Akita International U.

Hyperon Puzzle

Background

Many equations of state with hyperons are too soft to support the massive neutron stars.

Many-body int. may solve the puzzle?!

By including many-body interaction (e.g. ΛΝΝ), some models can support the 2M_o neutron star, but some cannot.

We have no definitive conclusion whether hyperon can appear in neutron stars.

Multi-Pomeron exch. pot.

A potential at high densities

 Λ potential U_{Λ} is a key ingredient in discussing the admixture of Λ in NS!

 Λ appears in NS when condition $\mu_n(\rho) > 0$ $\mu_{\Lambda}^{0}(\rho) = m_{\Lambda}c^{2} + U_{\Lambda}(\rho)$ is satisfied.

 μ_n : neutron chemical potential

Old hypernuclear data could not constrain U_{Λ} at $\rho > \rho_0$.

Millner, Dover, and Gal (1988).

Purpose

To examine the possibility to constraint A potential at high densities from heavy-ion collision data and future high resolution A hypernuclear data measured at J-PARC.

Λ binding energy B_{Λ} of Λ hypernuclei

AJ, K. Murase, Y. Nara, and A. Ohnishi, arXiv:2306.17452 [nucl-th].

Skyrme-Hartree-Fock method with spherical symmetry Rayet (1981); Lanskoy and Yamamoto (1997); Choi, Hiyama et al. (2022)

Skyrme-Hartree- Fock eq. $\left[-\nabla \cdot \left(\frac{\hbar^2}{2m_B^*} \nabla \right) + U_B - i \boldsymbol{W}_B \cdot (\nabla \times \sigma) \right] \psi_{B,i} = \epsilon_{B,i} \psi_{B,i}$

 $\frac{\hbar^2}{2m_{\Lambda}^*} = \frac{\hbar^2}{2m_{\Lambda}} + a_2^{\Lambda} \rho_N \qquad U_{\Lambda}(\rho_N) = a_1^{\Lambda} \rho_N + a_2^{\Lambda} \tau_N - a_3^{\Lambda} \Delta \rho_N + a_4^{\Lambda} \rho_N^{4/3} + a_5^{\Lambda} \rho_N^{5/3}$ *We take $W_{\Lambda} = 0$ because the spin-orbit potential of Λ is small.

 $\rho_N = \sum_{B=p,n} \sum_i |\psi_{B,i}|^2 \quad \tau_N = \sum_{B=p,n} \sum_i |\nabla \psi_{B,i}|^2 \quad \tau_\Lambda = |\nabla \psi_\Lambda|^2$

Obtain Λ binding energy $B_{\Lambda} = -(E_{\mathrm{HYP}} - E_{\mathrm{Core}})$ for a given set of a_i^{Λ} ,

and then compare with the exp. data using RMSD.

$$\Delta B_{\Lambda} = \sqrt{\sum (B_{\Lambda}^{\exp} - B_{\Lambda}^{\operatorname{cal}})^{2}/N}$$

$\Lambda \& ^3H$ directed flow of heavy-ion collision

Y. Nara, AJ, K. Murase, and A. Ohnishi, Phys. Rev. C 106, 044902 (2022). AJ, K. Murase, and Y. Nara, work in progress.

directed flow $v_1 = \langle p_x/p_T \rangle = \langle p_x/\sqrt{p_x^2 + p_y^2} \rangle$ Method

Microscopic transport model JAM2

Relativistic Quantum Molecular Dynamics mode using Lorentz-vector type potential **RQMDv**

 $\sqrt{s_{NN}}$ dependence of proton v_1 is explained. Nara and Ohnishi (2022)

Also, hypertriton $^3_{\Lambda}$ H v_1 is recently measured at STAR, and old JAM + coalescence overestimates the data. STAR, Phys. Rev. Lett. 130, 212301 (2023).

Let's discuss Λ and ${}_{\Lambda}^{3}H$ v_{1} by JAM2!

Results

Future high-resolution data measured at J-PARK and JLab have a possibility to constrain U_{Λ} at $\rho > \rho_0!$

If the depth of the Λ potential $U_{\Lambda}(\rho_0)$ is larger, U_{Λ} at $ho >
ho_0$ should be repulsive! **Current ∧ hypernuclear data** cannot constrain density ρ/ρ_0 density ρ/ρ_0

Chi3: Fitted to Chiral EFT results including $\Lambda NN + \Sigma NN$. (GKW3) Gerstung, Kaiser, and Weise (2020); (Kohno3) Kohno (2018). LY-IV: Skyrme-type Λ potential reproducing Λ binding energy data, Lanskoy and Yamamoto (1998).

Both Chi3 and LY-IV reproduce the data.

Insensitive to the density dependences

Summary

- We have examined the possibility to constraint the A potential at high-densities from A hypernuclear and heavy-ion collision data.
- Future high-resolution hypernuclear data measured at J-PARC and JLab have a possibility to constrain the Λ potential at $ho >
 ho_0!$
- Both repulsive and attractive Λ potentials at high densities reproduce the Λ and $^3_{\Lambda}$ H directed flow, but they are not sensitive to the density dependence of the A potential. Why?

Future work

- Investigating the A production mechanism in heavy-ion collision to
 - elucidate why Λ and $^3_{\Lambda}$ H directed flow are not sensitive to the density dependence of the Λ potential.
 - search for the channels sensitive to the density dependence of the Λ potential.