Multi－differential Studies of Strangeness Production with the CBM at FAIR using Machine Learning Techniques

Axel Puntke ${ }^{1}$ ，Andrea Dubla²，Felix Fidorra¹，Shahid Khan ${ }^{3}$ ，Lisa Katrin Kümmerer ${ }^{4}$ ， Oleksii Lubynets ${ }^{2,5}$ ，Ilya Selyuzhenkov ${ }^{2}$ for the CBM Collaboration

${ }^{1}$ WWU Münster，Germany，${ }^{2}$ GSI Darmstadt，Germany，${ }^{3}$ Eberhard Karls University of Tübingen，Germany，

${ }^{4}$ Heidelberg University，Germany，${ }^{5}$ Goethe University，Frankfurt am Main，Germany
Quark Matter 2023，Houston

1．The CBM Experiment

－Future fixed target heavy－ion experiment at FAIR
－Setup at FAIR with proton and ion beams
Energy range $\sqrt{ } \mathrm{S}_{\mathrm{NN}}=2.9-4.9 \mathrm{GeV}$
－Explores the QCD phase diagram at high net－baryon densities（ $\mu_{\mathrm{B}}>500 \mathrm{MeV}$ ）
Search for critical point and QGP－hadrons phase transition
－High interaction rates of up to $10^{7} \mathrm{~Hz}$
Precise Multi－differential（ p_{T}, y ，centrality）measurements of rare multi－strange particles

3．\wedge Selection using XGBoost

－XGBoost：Boosted Decision Tree（BDT）algorithm with some additional features

XGBoost shows better performance compared to other ML methods Boosted decision tree model maps feature input vector of a candidate to the probability of being a signal candidate（BDT score）

Model Training：

－Au－Au collisions＠$\sqrt{ } \mathrm{s}_{\mathrm{NN}}=4.93 \mathrm{GeV}$ mbias
－Signal：DCM－QGSM－SMM in 5 σ region around \wedge peak
－Background： UrQMD
（final experiment：real data）

－Hyperparameter optimization using Optuna package Maximization of accuracy using bayesian optimization and 5－fold cross validation
－Overfitting control：ROC curves and BDT probability plots have to match for train and test sets

Final Model

Feature Importance：

Apply BDT Cut at e．g． 0.9
－Insights on how the specific feature variables contribute to the models decision are gained by computing their SHAP values SHAP value～contribution to being signal
－E．g．Iow values of $\chi_{\text {prim }-\pi}^{2}$ often lead to classification as background

2．Reconstruction of short－lived strange Particles

－Performed with PFSimple，a KFParticleFinder－based C＋＋package optimized for reconstruction of short－lived particles
－Combines CbmROOT tracks（ $e^{ \pm}, \mu^{ \pm}, \Pi^{ \pm}, \mathrm{p}^{ \pm}, \mathrm{K}^{ \pm}$，lons）to mother particle candidate according to their PID hypothesis and corresponding decay channels
－Computes various topological variables for decay candidates
－Challenge：Reject combinatorial background candidates
＾Topological Variables Illustration：

4．Iterative ミSelection

－Zooming into the data using two consecutive XGBoost models

Candidates	Skimming	Candidates	Model A	
	$\xrightarrow[\substack{\text { Physically impossible } \\ \text { condidateses removed }}]{ }$	85\％BR 99\％Efficiency	BDT＞ 0.6	99\％BR 99\％Efficiency
		Model B		

Candidates S／BG＝ 39 68\％Efficiency

Model B gets trained on the characteristics of the remaining candidates without overfitting towards the already rejected candidates by skimming and Model A
Single model would only reach S／BG＝ 25 ＠49\％eff．

5．XGBoost compared to classical Box Selection

－Classically candidates are selected by applying box selection criteria on their topological variables to maximize S／BG ratio
－Linear selection only \＆laborious task to optimize them for every collision system and energy separately
－Machine learning allows non－linear multi－dimensional selection with automatic training on large data sets at much better S／BG ratio at same efficiency
Resulting S／BG Ratios：

6．Multi－Differential \wedge Selection

－Model performance is evaluated over CBMs whole $p_{T} y$ phase space
－Training separate models for different $p_{T} y$ intervals further improves the model performance $8-22 \%$ increase in S／BG ratio per interval at same efficiency as $p_{T} y$－integrated model achieved

