Multi-differential Studies of Strangeness Production with the CBM at FAIR using Machine Learning Techniques

Axel Puntke¹, Andrea Dubla², Felix Fidorra¹, Shahid Khan³, Lisa Katrin Kümmerer⁴, Oleksii Lubynets^{2,5}, Ilya Selyuzhenkov² for the CBM Collaboration

¹ WWU Münster, Germany, ² GSI Darmstadt, Germany, ³ Eberhard Karls University of Tübingen, Germany, ⁴ Heidelberg University, Germany, ⁵ Goethe University, Frankfurt am Main, Germany

Quark Matter 2023, Houston

1. The CBM Experiment

- Future fixed target heavy-ion experiment at FAIR
- Setup at FAIR with proton and ion beams
- Energy range √s_{NN} = 2.9-4.9 GeV
- Explores the QCD phase diagram at high net-baryon densities ($\mu_{R} > 500 \text{ MeV}$)
- Search for critical point and QGP-hadrons phase transition
- High interaction rates of up to 10⁷ Hz

 \circ Precise Multi-differential (p_{τ}, y, centrality) measurements of rare multi-strange particles

3. A Selection using XGBoost

- XGBoost: Boosted Decision Tree (BDT) algorithm with some additional features
 - XGBoost shows better performance compared to other ML methods
 - Boosted decision tree model maps feature input vector of a candidate to the probability of being a signal candidate (BDT score)

Model Training:

- Au-Au collisions @ √s_{NN} = 4.93 GeV mbias
- DCM-QGSM-SMM in 5σ <u>Signal:</u>
 - region around ∧ peak
- Background: UrQMD
 - (final experiment: real data)
- Hyperparameter optimization using Optuna package

 Maximization of accuracy using bayesian optimization and 5-fold cross validation

 Overfitting control: ROC curves and BDT probability plots have to match for train and test sets

--- Train -> ROC (AUC = 0.9973

to classify as signal or background

False Positive Rate

Final Model:

Feature Importance:

 Insights on how the specific feature variables contribute to the models decision are gained by computing their SHAP values

 SHAP value ~ contribution to being signal $\chi^2_{\text{prim}-\pi}$ $\chi^2_{\text{prim}-p}$

• E.g. low values of $\chi^2_{\text{prim}-\pi}$ often lead to classification as background

2. Reconstruction of short-lived strange Particles

- Performed with **PFSimple**, a KFParticleFinder-based C++ package optimized for reconstruction of short-lived particles
- Combines CbmROOT tracks (e^t, μ^t, π^t, p^t, K^t, Ions) to mother particle candidate according to their PID hypothesis and corresponding decay channels
- Computes various topological variables for decay candidates
- Challenge: Reject combinatorial background candidates

A Topological Variables Illustration:

4. Iterative **E Selection**

Zooming into the data using two consecutive XGBoost models

5. XGBoost compared to classical Box Selection

- Classically candidates are selected by applying box selection criteria on their topological variables to maximize S/BG ratio
 - Linear selection only & laborious task to optimize them for every collision system and energy separately
- Machine learning allows non-linear multi-dimensional selection with automatic training on large data sets at much better S/BG ratio at same efficiency

Resulting S/BG Ratios:

6. Multi-Differential Λ Selection

 Model performance is evaluated over CBMs whole $p_{\tau}y$ phase space $\frac{\omega}{a^{\tau}}$

Training separate models for different p_Ty intervals further improves the model performance

o 8 - 22 % increase in S/BG ratio per interval at same efficiency as p_Ty-integrated model achieved

working at 90% ML efficiency and S/BG = 3.18

