Multi-differential Studies of Strangeness Production with the CBM
at FAIR using Machine Learning Techniques

Axel Puntke', Andrea Dubla?, Felix Fidorra', Shahid Khan?, Lisa Katrin Kimmerer?4,
Oleksii Lubynets?>, llya Selyuzhenkov? for the CBM Collaboration

' WWU Munster, Germany, 2 GSI Darmstadt, Germany, * Eberhard Karls University of Tubingen, Germany,
* Heidelberg University, Germany, °> Goethe University, Frankfurt am Main, Germany

Quark Matter 2023, Houston

1. The CBM Experiment 2. Reconstruction of short-lived strange Particles

e fFuture fixed target heavy-ion experiment at FAIR e Performed with PFSimple, a KFParticleFinder-based C++ package
e Setup at FAIR with proton and ion beams optimized for reconstruction of short-lived particles

o Energyrange vs = 2.9-49 GeV Combines ComROOT tracks (e*, y*, 17, p~, K%, lons) to mother particle
e Explores the QCD phase diagram at high net-baryon candidate according to their PID hypothesis and corresponding decay

densities (U, > 500 MeV) channels

o Search for critical point and QGP-hadrons phase transition e Computes various topological variables for decay candidates
e High interaction rates of up to 10’ Hz e Challenge: Reject combinatorial background candidates

o Precise Multi-differential (p-, y, centrality) measurements of rare
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4. Iterative = Selection

e /ooming into the data using two consecutive XGBoost models
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3. A Selection using XGBoost { Candidates } n ~ SRS

e XGBoost: Boosted Decision Tree (BDT) algorithm with some additional
features
o XGBoost shows better performance compared to other ML methods
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o Boosted decision tree model maps feature input vector of a l
candidate to the probability of being a signal candidate (BDT score) | (€ N > Model

Model Training: P w300 = S/BG = 39
R 68% Efficiency

Au-Au collisions @ Vs, = 4.93 GeV mbias ] < ) Model
Signal: DCM-QGSM-SMM in 50 ? > Single

BDT > 0.997
B gets trained on the characteristics of the

; Candidates remaining candidates without overfitting towards
the already rejected candidates by skimming and

A
model would only reach S/BG = 25 @ 49% eff.

Backaround rj%OJDmund  peak 'HAIEE 5. XGBoost compared to classical Box Selection

(final experiment: real data) o
Hyperparameter optimization using Optuna package
o Maximization of accuracy using bayesian optimization and 5-fold
cross validation
Overfitting control: ROC curves and BDT
probability plots have to match for train
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e Classically candidates are selected by applying box selection criterio
on their topological variables to maximize S/BG ratio
o Linear selection only & laborious task to optimize them for every
collision system and energy separately
18 e Machine learning allows non-linear multi-dimensional selection with
automatic training on large data sets at much better S/BG ratio at
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to classify as signal or background

e Insights on how the specific feature variables contribute to the models | 6. Multi-Differential A Selection

decision are gained by computing their SHAP values
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e Model performance is evaluated
~ i i ] High
o SHAP value contﬂbunon2 I over CBMs whole p.y phase space
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e T[raining separate models for
different p_y intervals further
improves the model performance
o 8-22 % increase in S/BG

ratio per interval at same -
Low efficiency as p,y-integrated TR T
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Selected MC-true candidates by XGBoost model
working at 90% ML efficiency and S/BG = 318
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