AT

Hydrodynamic theories for a system of weakly- .. T Fic

. i L. _ S22 INSTITUTO DE ["ISICA
interacting ultra-relativistic scalar particles EES GO T ——
Gabriel Soares Rocha*??¢ C. V. P. de Brito?, G. S. Denicol?

? Instituto de Fisica, Universidade Federal Fluminense, Niteroi, Brasil

b |nstitut fur Theoretische Physik, Goethe-Universitat, Frankfurt am Main, Germany
° Department of Physics and Astronomy, Vanderbilt University, Nashville, USA *gabrielsr@id.uff.br CAPES Conseiho Nacional de Desenvolvimento

Cientifico e Tecnologico

Abstract

In the latter decades, the study of heavy ion collisions has stimulated research on the emergence of relativistic fluid dynamics from a microscopic theory
and on its domain of applicability. For dissipative fluids, the fundamental hydrodynamic equations of motion, 9, N* = 0,0, T*” = 0 must be complemented
by constitutive relations or further equations of motion for the dissipative currents. After the recognition that relativistic Navier-Stokes (NS) theory is acausal and
unstable [1], second order transient hydrodynamic [2] (TT) and, more recently, Bemfica-Disconzi-Noronha-Kovtun (BDNK) [3] theories were proposed to circumvent
this problem. In a Kinetic theory framework, these equations of motion emerge from the relativistic Boltzmann equation
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where o(s’, ©) is cross-section and s" = (p + p’)z, through power-counting procedures implementing the so-called gradient expansion. The corresponding
transport coefficients usually require the inversion of the linearized collision term, fopz¢p = [dQ dQ" dP' W,y ¢sqq Topfop' (g + Oq — Pp — @pr), Where ¢p =
0fy/fop = (fp — fop)/fop and fop = exp (@ — Bu,, p") is the local equilibrium distribution. This is usually a highly non-trivial task. However, in Ref. [4] it was shown
that for scalar particles whose Lagrangian density is £ = (1/2)9,,p 0"¢ — (A/41)¢?, the eigensystem of L can be computed in exact form,
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where (%) = Lg,o‘)(ﬁEp) denotes associated Laguerre polynomials and p'#1 - .. p#¢) denotes irreducible tensors constructed from 4-momentum [5]. This result
emerges as a consequence of the form of the cross-section o(s’, ©) = g/(2ns’), which possesses no angular dependence. In the present work [6], we use this
extremely rare result to compute the transport coefficients of NS, BDNK and TT analytically.
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Equations of motion and transport coefficients Bjorken flow solutions

In kinetic theory, the particle 4-current and the energy-momentum tensor
are identified, respectively, as N* = [ dP p*f,, TH* = | dP p*p"f,, which
can be decomposed in equilibrium and non-equilibrium parts as N* = NZ, +
ONH, THY = Te%” + o0 THY, where Ne‘g = nou*, ON* = onu* + vH, Te/ay —
soutu” — PgAM*Y, and o THY = ocu*u” — NA* + h*u” + Y u? + wHv,
However, the separation f, = fop + 01y, is not unique and the thermodynamic |
variables 3, a;, and u* must be defined using matching conditions. In a kinetic T =

theory framework, an ensemble of matching conditions can be formulated in , | | R | |
: Fig. 1 — Evolution under Bjorken flow of the equilibrium energy density according to
the following way

Navier-Stokes equations of motion for various values of eg(79)/Kns o initial Knudsen number.
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The above conditions reduce to the Landau matching conditions when g = 1, 2 (g 015 2 () 05

s = 2,and z = 1 and to the Eckart conditions when g =1,s = 2, and z = 0. 45 (1) g 19 420 (1) g 19

Other values of g, s, and z lead to novel matching conditions that often do 0.05 0.05

not have any intuitive physical interpretation. The inspiration for employing 7% 5 1 ' "0+ Goor 6o 0100 1

such alternative matching conditions stems from BDNK theory. In this case,
causality and stability imply that oe, h* #~ 0 [3].

Different hydrodynamic equations of motion emerge from the Boltzmann & (T D_mﬂi |
equation by different power-counting procedures. Employing the Chapman- 0 010l | /
|

Enskog procedure [5] and conditions (3), we have the NS relations N R _ AR \\ NN
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Alternatively, using the order of magnitude procedure [7] in Landau matching | | | |
conditions, we obtain the transient hydrodynamic equations of motion in comparison with the attractor (dashed lines).

Fig. 2 — Evolution under Bjorken flow of the independent component of the shear-stress tensor

according to the transient hydrodynamic theory for several initial conditions (continuous lines)
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And, finally employing the modified Chapman-Enskog procedure [8] and con- 0Ty
ditions (3), we obtain the BDNK relations 2 4 6 s 1

x (DB 0 D5 6 D3 6 Fig. 3 — Evolution under Bjorken flow of the normalized dissipative component of the energy
— ( ) on=¢ ( ) 0e = X ( ) density according to BDNK theory for several initial conditions. (Lower right panel) Causal and
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