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Abstract
In the latter decades, the study of heavy ion collisions has stimulated research on the emergence of relativistic fluid dynamics from a microscopic theory

and on its domain of applicability. For dissipative fluids, the fundamental hydrodynamic equations of motion, ∂µNµ = 0, ∂µT µν = 0 must be complemented

by constitutive relations or further equations of motion for the dissipative currents. After the recognition that relativistic Navier-Stokes (NS) theory is acausal and

unstable [1], second order transient hydrodynamic [2] (TT) and, more recently, Bemfica-Disconzi-Noronha-Kovtun (BDNK) [3] theories were proposed to circumvent

this problem. In a Kinetic theory framework, these equations of motion emerge from the relativistic Boltzmann equation

pµ∂µfp =
∫

dQ dQ′ dP ′Wpp′↔qq′(fqfq′ − fpfp′), Wpp′↔qq′ = (2π)6s ′σ(s ′,Θ)δ(4)(p + p′ − q − q′), (1)

where σ(s ′,Θ) is cross-section and s ′ = (p + p′)2, through power-counting procedures implementing the so-called gradient expansion. The corresponding

transport coefficients usually require the inversion of the linearized collision term, f0pL̂φp ≡
∫

dQ dQ′ dP ′Wpp′↔qq′ f0pf0p′(φq + φq′ − φp − φp′), where φp ≡
δfp/f0p ≡ (fp − f0p)/f0p and f0p = exp (α − βuµpµ) is the local equilibrium distribution. This is usually a highly non-trivial task. However, in Ref. [4] it was shown

that for scalar particles whose Lagrangian density is L = (1/2)∂µϕ ∂µϕ − (λ/4!)ϕ4, the eigensystem of L̂ can be computed in exact form,

L̂ |χn`〉 = χn` |χn`〉 |χn`〉 = L(2`+1)
n,p p〈µ1 · · · pµ`〉, χn` = − geα

4π2β2

(
n + ` − 1
n + ` + 1 + δn0δ`0

)
, g = λ2

32π
, (2)

where L(α)
np ≡ L(α)

n (βEp) denotes associated Laguerre polynomials and p〈µ1 · · · pµ`〉 denotes irreducible tensors constructed from 4-momentum [5]. This result

emerges as a consequence of the form of the cross-section σ(s ′,Θ) = g/(2πs ′), which possesses no angular dependence. In the present work [6], we use this

extremely rare result to compute the transport coefficients of NS, BDNK and TT analytically.

Equations of motion and transport coefficients
In kinetic theory, the particle 4-current and the energy-momentum tensor

are identified, respectively, as Nµ =
∫

dP pµfp, T µν =
∫

dP pµpν fp, which
can be decomposed in equilibrium and non-equilibrium parts as Nµ = Nµ

eq +
δNµ, T µν = T µν

eq + δT µν , where Nµ
eq = n0uµ, δNµ = δnuµ + νµ, T µν

eq =
ε0uµuν − P0∆

µν , and δT µν = δεuµuν − Π∆µν + hµuν + hνuµ + πµν .

However, the separation fp = f0p + δfp, is not unique and the thermodynamic

variables β, α, and uµ must be defined using matching conditions. In a kinetic

theory framework, an ensemble of matching conditions can be formulated in

the following way∫
dP E q

p δfp ≡ 0,
∫

dP E s
pδfp ≡ 0,

∫
dP E z

p p〈µ〉δfp ≡ 0. (3)

The above conditions reduce to the Landau matching conditions when q = 1,
s = 2, and z = 1 and to the Eckart conditions when q = 1, s = 2, and z = 0.
Other values of q, s , and z lead to novel matching conditions that often do

not have any intuitive physical interpretation. The inspiration for employing

such alternative matching conditions stems from BDNK theory. In this case,

causality and stability imply that δε, hµ 6= 0 [3].

Different hydrodynamic equations of motion emerge from the Boltzmann
equation by different power-counting procedures. Employing the Chapman-
Enskog procedure [5] and conditions (3), we have the NS relations

δn, δε,Π = 0, νµ = z
3

gβ2 ∇µα, hµ = (z − 1)
12

gβ3 ∇µα, πµν =
96

gβ3 σµν , (4)

Alternatively, using the order of magnitude procedure [7] in Landaumatching

conditions, we obtain the transient hydrodynamic equations of motion

τνDν〈λ〉 + νλ = κn∇λα − δνννλθ − (λνπ∇µα + τνπ∇µP0)πλµ + `νπ∆
λ
α∇µπαµ

− 7
5τνσ λ

µ νµ − τνω λ
µ νµ,

τπDπ〈λµ〉 + πλµ = 2ησλµ + ϕ8ν〈λνµ〉 − δπππλµθ − τπν∇〈λP0 νµ〉 + `πν∇〈λνµ〉

+ λπν∇〈λα νµ〉 − 2τπω 〈λ
ν πµ〉ν − τππσ 〈λ

ν πµ〉ν ,
(5)

τν = 60
gn0β2 , κn = 3

gβ2 , τπ = 72
gn0β2 , η = 48

gβ3 , (6)

δνν = τν , λνπ =
3τνβ

40
, τνπ =

τνβ

80P0
, `νπ =

τνβ

40
,

ϕ8 =
4

n0β
, δππ =

4
3

τπ , τππ = 2τπ , `πν = −
4
3

τπ

β
, λπν =

2
3

τπ

β
, τπν = −

4
3

τπ

n0
.

And, finally employing the modified Chapman-Enskog procedure [8] and con-
ditions (3), we obtain the BDNK relations

Π =
χ

3

(Dβ

β
−

θ

3

)
, δn = ξ

(Dβ

β
−

θ

3

)
, δε = χ

(Dβ

β
−

θ

3

)
,

νµ = κ
(∇µβ

β
+ Duµ

)
, hµ = λ

(∇µβ

β
+ Duµ

)
, πµν = 2ησµν .

(7)

ξ =
12

gβ2 (q − 1)(s − 1), χ =
36

gβ3 (q − 2)(s − 2),

κ =
12

gβ2 z, λ =
48

gβ3 (z − 1), η =
48

gβ3 .
(8)

Next, we analyze solutions for the equations of motion (4), (5), and (7) in the

transversely-homogeneous, longitudinally-boost invariant Bjorken flow.

Bjorken flow solutions

Fig. 1 – Evolution under Bjorken flow of the equilibrium energy density according to

Navier-Stokes equations of motion for various values of ε0(τ0)/KNS ∝ initial Knudsen number.

Fig. 2 – Evolution under Bjorken flow of the independent component of the shear-stress tensor

according to the transient hydrodynamic theory for several initial conditions (continuous lines)

in comparison with the attractor (dashed lines).

Fig. 3 – Evolution under Bjorken flow of the normalized dissipative component of the energy

density according to BDNK theory for several initial conditions. (Lower right panel) Causal and

stable regions in matching parameter space for BDNK theory.
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